Selection of Optimal Machining Parameters Using a Genetic Algorithm

K. Krishnamurthy, Lei Yan
{"title":"Selection of Optimal Machining Parameters Using a Genetic Algorithm","authors":"K. Krishnamurthy, Lei Yan","doi":"10.1115/imece2001/dsc-24513","DOIUrl":null,"url":null,"abstract":"\n Selection of optimal machining parameters is a difficult process due to the large number of variables and their complex interdependencies. In this study, a genetic algorithm-based method is presented to determine the optimal machining parameters for machining pockets using multi-pass end milling operations. The number of passes, axial and radial depths of cut, and feed rate are determined to minimize a cost function that is based on the cutting force. Results are presented for two different tool paths using a mechanistic model for predicting the cutting force.","PeriodicalId":90691,"journal":{"name":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/dsc-24513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Selection of optimal machining parameters is a difficult process due to the large number of variables and their complex interdependencies. In this study, a genetic algorithm-based method is presented to determine the optimal machining parameters for machining pockets using multi-pass end milling operations. The number of passes, axial and radial depths of cut, and feed rate are determined to minimize a cost function that is based on the cutting force. Results are presented for two different tool paths using a mechanistic model for predicting the cutting force.
用遗传算法选择最优加工参数
由于变量数量众多且相互依存关系复杂,选择最佳加工参数是一个困难的过程。在本研究中,提出了一种基于遗传算法的方法来确定多道次端铣加工袋的最佳加工参数。孔道数、轴向和径向切削深度以及进给速度的确定是为了使基于切削力的成本函数最小化。结果提出了两种不同的刀具路径使用机械模型预测切削力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信