SPARTA at CASE 2021 Task 1: Evaluating Different Techniques to Improve Event Extraction

Arthur Müller, Andreas Dafnos
{"title":"SPARTA at CASE 2021 Task 1: Evaluating Different Techniques to Improve Event Extraction","authors":"Arthur Müller, Andreas Dafnos","doi":"10.18653/v1/2022.case-1.27","DOIUrl":null,"url":null,"abstract":"We participated in the Shared Task 1 at CASE 2021, Subtask 4 on protest event extraction from news articles and examined different techniques aimed at improving the performance of the winning system from the last competition round. We evaluated in-domain pre-training, task-specific pre-fine-tuning, alternative loss function, translation of the English training dataset into other target languages (i.e., Portuguese, Spanish, and Hindi) for the token classification task, and a simple data augmentation technique by random sentence reordering. This paper summarizes the results, showing that random sentence reordering leads to a consistent improvement of the model performance.","PeriodicalId":80307,"journal":{"name":"The Case manager","volume":"2 1","pages":"189-194"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Case manager","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.case-1.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We participated in the Shared Task 1 at CASE 2021, Subtask 4 on protest event extraction from news articles and examined different techniques aimed at improving the performance of the winning system from the last competition round. We evaluated in-domain pre-training, task-specific pre-fine-tuning, alternative loss function, translation of the English training dataset into other target languages (i.e., Portuguese, Spanish, and Hindi) for the token classification task, and a simple data augmentation technique by random sentence reordering. This paper summarizes the results, showing that random sentence reordering leads to a consistent improvement of the model performance.
任务1:评估改进事件提取的不同技术
我们参加了CASE 2021的共享任务1,从新闻文章中提取抗议事件的子任务4,并研究了旨在提高上一轮比赛中获胜系统性能的不同技术。我们评估了域内预训练、任务特定的预微调、替代损失函数、将英语训练数据集翻译成其他目标语言(即葡萄牙语、西班牙语和印地语)用于标记分类任务,以及通过随机句子重新排序的简单数据增强技术。本文对结果进行了总结,结果表明,随机句子重新排序导致模型性能的持续提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信