{"title":"SPARTA at CASE 2021 Task 1: Evaluating Different Techniques to Improve Event Extraction","authors":"Arthur Müller, Andreas Dafnos","doi":"10.18653/v1/2022.case-1.27","DOIUrl":null,"url":null,"abstract":"We participated in the Shared Task 1 at CASE 2021, Subtask 4 on protest event extraction from news articles and examined different techniques aimed at improving the performance of the winning system from the last competition round. We evaluated in-domain pre-training, task-specific pre-fine-tuning, alternative loss function, translation of the English training dataset into other target languages (i.e., Portuguese, Spanish, and Hindi) for the token classification task, and a simple data augmentation technique by random sentence reordering. This paper summarizes the results, showing that random sentence reordering leads to a consistent improvement of the model performance.","PeriodicalId":80307,"journal":{"name":"The Case manager","volume":"2 1","pages":"189-194"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Case manager","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.case-1.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We participated in the Shared Task 1 at CASE 2021, Subtask 4 on protest event extraction from news articles and examined different techniques aimed at improving the performance of the winning system from the last competition round. We evaluated in-domain pre-training, task-specific pre-fine-tuning, alternative loss function, translation of the English training dataset into other target languages (i.e., Portuguese, Spanish, and Hindi) for the token classification task, and a simple data augmentation technique by random sentence reordering. This paper summarizes the results, showing that random sentence reordering leads to a consistent improvement of the model performance.