A. Olioso, X. Briottet, S. Fabre, F. Jacob, A. Michel, S. Nativel, V. Rivalland, J. Roujean
{"title":"Relations Between Landsat Spectral Reflectances and Land Surface Emissivity Over Bare Soils","authors":"A. Olioso, X. Briottet, S. Fabre, F. Jacob, A. Michel, S. Nativel, V. Rivalland, J. Roujean","doi":"10.1109/IGARSS.2019.8899275","DOIUrl":null,"url":null,"abstract":"Land surface emissivity is required for deriving surface temperature from thermal infrared radiances. When using single-channel or two-channel thermal infrared sensors, information on emissivity may be derived from spectral reflectance measurements through regression models. In this study, we present relationships derived over bare soils for Landsat 7 – ETM+ sensor. Reflectances in ETM+ channels were obtained from soil spectra (between 0.4 and 13 μm) extracted from the ASTER spectral library and the dataset acquired by Lesaignoux et al. (2013). The best relations were obtained between reflectances in the mid-infrared channels (ETM5 and ETM7) and the thermal infrared channel (ETM6) with correlation coefficients of 0.63 and 0.72 respectively. The relations were mostly generated by the variations of soil reflectances due to changes in soil moisture. Correlations were lower when considering the variations due to soil type.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"6 1","pages":"6937-6940"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8899275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Land surface emissivity is required for deriving surface temperature from thermal infrared radiances. When using single-channel or two-channel thermal infrared sensors, information on emissivity may be derived from spectral reflectance measurements through regression models. In this study, we present relationships derived over bare soils for Landsat 7 – ETM+ sensor. Reflectances in ETM+ channels were obtained from soil spectra (between 0.4 and 13 μm) extracted from the ASTER spectral library and the dataset acquired by Lesaignoux et al. (2013). The best relations were obtained between reflectances in the mid-infrared channels (ETM5 and ETM7) and the thermal infrared channel (ETM6) with correlation coefficients of 0.63 and 0.72 respectively. The relations were mostly generated by the variations of soil reflectances due to changes in soil moisture. Correlations were lower when considering the variations due to soil type.