Relations Between Landsat Spectral Reflectances and Land Surface Emissivity Over Bare Soils

A. Olioso, X. Briottet, S. Fabre, F. Jacob, A. Michel, S. Nativel, V. Rivalland, J. Roujean
{"title":"Relations Between Landsat Spectral Reflectances and Land Surface Emissivity Over Bare Soils","authors":"A. Olioso, X. Briottet, S. Fabre, F. Jacob, A. Michel, S. Nativel, V. Rivalland, J. Roujean","doi":"10.1109/IGARSS.2019.8899275","DOIUrl":null,"url":null,"abstract":"Land surface emissivity is required for deriving surface temperature from thermal infrared radiances. When using single-channel or two-channel thermal infrared sensors, information on emissivity may be derived from spectral reflectance measurements through regression models. In this study, we present relationships derived over bare soils for Landsat 7 – ETM+ sensor. Reflectances in ETM+ channels were obtained from soil spectra (between 0.4 and 13 μm) extracted from the ASTER spectral library and the dataset acquired by Lesaignoux et al. (2013). The best relations were obtained between reflectances in the mid-infrared channels (ETM5 and ETM7) and the thermal infrared channel (ETM6) with correlation coefficients of 0.63 and 0.72 respectively. The relations were mostly generated by the variations of soil reflectances due to changes in soil moisture. Correlations were lower when considering the variations due to soil type.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"6 1","pages":"6937-6940"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8899275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Land surface emissivity is required for deriving surface temperature from thermal infrared radiances. When using single-channel or two-channel thermal infrared sensors, information on emissivity may be derived from spectral reflectance measurements through regression models. In this study, we present relationships derived over bare soils for Landsat 7 – ETM+ sensor. Reflectances in ETM+ channels were obtained from soil spectra (between 0.4 and 13 μm) extracted from the ASTER spectral library and the dataset acquired by Lesaignoux et al. (2013). The best relations were obtained between reflectances in the mid-infrared channels (ETM5 and ETM7) and the thermal infrared channel (ETM6) with correlation coefficients of 0.63 and 0.72 respectively. The relations were mostly generated by the variations of soil reflectances due to changes in soil moisture. Correlations were lower when considering the variations due to soil type.
裸地上陆地卫星光谱反射率与地表发射率的关系
地表发射率是根据热红外辐射推算地表温度的必要条件。当使用单通道或双通道热红外传感器时,可以通过回归模型从光谱反射率测量中获得发射率信息。在本研究中,我们展示了Landsat 7 - ETM+传感器在裸露土壤上的关系。ETM+通道的反射率由ASTER光谱库和Lesaignoux et al.(2013)获取的数据集提取的土壤光谱(0.4 ~ 13 μm)获得。中红外通道(ETM5和ETM7)与热红外通道(ETM6)的反射率关系最佳,相关系数分别为0.63和0.72。这种关系主要是由土壤水分变化引起的土壤反射率变化引起的。考虑土壤类型差异时,相关性较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信