Mechanism of complex fracure creation in hydraulic fracturing

Masaya Nagaso, H. Mikada, J. Takekawa
{"title":"Mechanism of complex fracure creation in hydraulic fracturing","authors":"Masaya Nagaso, H. Mikada, J. Takekawa","doi":"10.3997/2352-8265.20140202","DOIUrl":null,"url":null,"abstract":"Hydraulic fracturing is an essential technique for the development of unconventional oil reservoirs. If fracture network formation is evaluated before a real practice of hydraulic fracturing, the permeability of the rock could be optimized after the fracturing. Since a lot of factors are involved in fracture complexity, the mechanism of fracture network formation is not fully revealed. Although the strength heterogeneities of rock mass is known to be one of the factors, strength heterogeneities is rarely taken into consideration because of less understanding of the influence on complex fracture creation. We perform a series of numerical simulation using the discrete element method and investigate the mechanism of fracture network formation, focusing on the strength heterogeneities and brittleness, which is often used as an index of fracture network formation. In heterogeneous models, complex fracture is formed by micro cracks generated around the tip of main fracture and pores with specific shape. On the other hand, in a model with high brittleness, a lot of branches are created by shear failure with main fracture propagation. These results indicate that the mechanism of complex fracture formation due to strength heterogeneities is completely different from that due to brittleness, and that the effect of the strength heterogeneities of rock should be considered as a key factor of the complication of fracture networks.","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"14 1","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Geoscience Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2352-8265.20140202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Hydraulic fracturing is an essential technique for the development of unconventional oil reservoirs. If fracture network formation is evaluated before a real practice of hydraulic fracturing, the permeability of the rock could be optimized after the fracturing. Since a lot of factors are involved in fracture complexity, the mechanism of fracture network formation is not fully revealed. Although the strength heterogeneities of rock mass is known to be one of the factors, strength heterogeneities is rarely taken into consideration because of less understanding of the influence on complex fracture creation. We perform a series of numerical simulation using the discrete element method and investigate the mechanism of fracture network formation, focusing on the strength heterogeneities and brittleness, which is often used as an index of fracture network formation. In heterogeneous models, complex fracture is formed by micro cracks generated around the tip of main fracture and pores with specific shape. On the other hand, in a model with high brittleness, a lot of branches are created by shear failure with main fracture propagation. These results indicate that the mechanism of complex fracture formation due to strength heterogeneities is completely different from that due to brittleness, and that the effect of the strength heterogeneities of rock should be considered as a key factor of the complication of fracture networks.
水力压裂中复杂裂缝形成机理
水力压裂是非常规油藏开发的一项重要技术。如果在实际水力压裂前对裂缝网络形成进行评价,则可以在压裂后优化岩石的渗透率。由于影响裂缝复杂性的因素很多,裂缝网络形成的机理尚未完全揭示。虽然岩体的强度非均质性是已知的影响因素之一,但由于对其对复杂裂隙形成的影响认识较少,因此很少考虑岩体的强度非均质性。采用离散元方法进行了一系列数值模拟,研究了裂缝网络形成的机理,重点研究了强度非均质性和脆性,这是通常用作裂缝网络形成的指标。在非均质模型中,复杂断裂是由主断裂尖端周围产生的微裂纹和具有特定形状的孔隙形成的。另一方面,在高脆性模型中,大量分支是由剪切破坏产生的,主要断裂扩展。这些结果表明,岩石强度非均质性导致复杂裂缝形成的机理与脆性形成的机理完全不同,岩石强度非均质性的影响应被视为裂缝网络复杂性的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信