Probablistic-based framework for medical CT images segmentation

Alaa El-Din Mohamed, Mohammed Abdel-Megeed Salem, Doaa Hegazy, Howida A. Shedeed
{"title":"Probablistic-based framework for medical CT images segmentation","authors":"Alaa El-Din Mohamed, Mohammed Abdel-Megeed Salem, Doaa Hegazy, Howida A. Shedeed","doi":"10.1109/INTELCIS.2015.7397212","DOIUrl":null,"url":null,"abstract":"Liver segmentation is a difficult process due to wide variability of livers shapes and sizes between patients and the intensity similarity between the liver and other organs. Liver segmentation from abdominal Computed Tomography (CT) images is very useful in many diagnostic and surgical processes. It is the essential step in many clinical applications. Medical decisions are rarely taken without the use of imaging technology such as CT, Magnetic Resonance Imaging (MRI), or Ultrasound Imaging (US). In this paper, an automated probabilistic-based framework for liver segmentation from abdominal CT images is presented. The framework consists of four stages; thresholding stage, superpixels construction stage, Bayesian network construction stage and region merging stage. We train and validate our model using 20 clinical volumes. We use the MICCAI dataset (Medical Image Computing and Computer Assisted Intervention for Liver Segmentation). MICCAI dataset is used in more than 90 researches.","PeriodicalId":6478,"journal":{"name":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"8 1","pages":"149-155"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELCIS.2015.7397212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Liver segmentation is a difficult process due to wide variability of livers shapes and sizes between patients and the intensity similarity between the liver and other organs. Liver segmentation from abdominal Computed Tomography (CT) images is very useful in many diagnostic and surgical processes. It is the essential step in many clinical applications. Medical decisions are rarely taken without the use of imaging technology such as CT, Magnetic Resonance Imaging (MRI), or Ultrasound Imaging (US). In this paper, an automated probabilistic-based framework for liver segmentation from abdominal CT images is presented. The framework consists of four stages; thresholding stage, superpixels construction stage, Bayesian network construction stage and region merging stage. We train and validate our model using 20 clinical volumes. We use the MICCAI dataset (Medical Image Computing and Computer Assisted Intervention for Liver Segmentation). MICCAI dataset is used in more than 90 researches.
基于概率的医学CT图像分割框架
肝脏分割是一个困难的过程,因为患者之间肝脏形状和大小的差异很大,肝脏和其他器官之间的强度相似。从腹部计算机断层扫描(CT)图像中分割肝脏在许多诊断和手术过程中非常有用。这是许多临床应用中必不可少的一步。在不使用CT、磁共振成像(MRI)或超声成像(US)等成像技术的情况下,很少会做出医疗决定。本文提出了一种基于概率的腹部CT图像肝脏分割的自动框架。该框架包括四个阶段;阈值分割阶段、超像素构建阶段、贝叶斯网络构建阶段和区域合并阶段。我们使用20个临床卷来训练和验证我们的模型。我们使用MICCAI数据集(医学图像计算和计算机辅助干预肝脏分割)。MICCAI数据集被用于90多项研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信