Fabrication of chitosan/polycaprolactone/Myrtus communis L. extract nanofibrous mats with enhanced antibacterial activities

Tayebeh Modiri-Delshad, A. Ramazani, M. Khoobi, H. Akbari Javar, T. Akbari, M. Amin
{"title":"Fabrication of chitosan/polycaprolactone/Myrtus communis L. extract nanofibrous mats with enhanced antibacterial activities","authors":"Tayebeh Modiri-Delshad, A. Ramazani, M. Khoobi, H. Akbari Javar, T. Akbari, M. Amin","doi":"10.1177/09673911231151506","DOIUrl":null,"url":null,"abstract":"Development of novel antimicrobial phytochemical-bearing nanofibrous mats could be considered as a promising strategy to overcome against antibiotic resistance in wound healing. In this work, the electrospinning process was used to successfully create novel antimicrobial nanofiber mats made of a blend of electrospun chitosan/polycaprolactone (CS/PCL) loaded with M. communis leaf extract (MCLE) (15 and 30 wt.%). Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) analysis, water contact angle (WCA) testing, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and mechanical properties testing were applied to evaluate physicochemical properties of the nanofiber mats. The FESEM images showed uniform, bead-free, and smooth nanofiber mats with good compatibility between MCLE and polymers. Image J software was used to calculate the average diameters of nanofibrous mats, and the average diameter increased significantly as the extract concentration increased. The existence of MCLE in the nanofibrous mats was verified by ATR-FTIR spectroscopy and XRD analysis. The tensile strength of the nanofiber mats was satisfactory (6.31–12.47 MPa). The incorporation of MCLE in CS/PCL nanofibers enhanced the scaffold’s hydrophilicity, as evidenced by a reduction in contact angle. Significant reduction up to 0.5 log of both Escherichia ( E.) coli and Staphylococcus aureus count was observed upon exposure to CS/PCL nanofibers. The MCLE (15 and 30 wt.%)-incorporated CS/PCL nanofibers demonstrated a significant reduction of bacterial count up to 0.8 log for both bacteria. The results demonstrated that manufactured nanofibers could be considered as a promising dressing in wound dressing.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers and Polymer Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09673911231151506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Development of novel antimicrobial phytochemical-bearing nanofibrous mats could be considered as a promising strategy to overcome against antibiotic resistance in wound healing. In this work, the electrospinning process was used to successfully create novel antimicrobial nanofiber mats made of a blend of electrospun chitosan/polycaprolactone (CS/PCL) loaded with M. communis leaf extract (MCLE) (15 and 30 wt.%). Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) analysis, water contact angle (WCA) testing, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and mechanical properties testing were applied to evaluate physicochemical properties of the nanofiber mats. The FESEM images showed uniform, bead-free, and smooth nanofiber mats with good compatibility between MCLE and polymers. Image J software was used to calculate the average diameters of nanofibrous mats, and the average diameter increased significantly as the extract concentration increased. The existence of MCLE in the nanofibrous mats was verified by ATR-FTIR spectroscopy and XRD analysis. The tensile strength of the nanofiber mats was satisfactory (6.31–12.47 MPa). The incorporation of MCLE in CS/PCL nanofibers enhanced the scaffold’s hydrophilicity, as evidenced by a reduction in contact angle. Significant reduction up to 0.5 log of both Escherichia ( E.) coli and Staphylococcus aureus count was observed upon exposure to CS/PCL nanofibers. The MCLE (15 and 30 wt.%)-incorporated CS/PCL nanofibers demonstrated a significant reduction of bacterial count up to 0.8 log for both bacteria. The results demonstrated that manufactured nanofibers could be considered as a promising dressing in wound dressing.
壳聚糖/聚己内酯/桃金娘提取物纳米纤维毡的制备及其抗菌性能
新型抗微生物植物化学物质纳米纤维垫的开发是克服伤口愈合中抗生素耐药性的一种有前途的策略。在这项工作中,利用静电纺丝工艺成功地制备了新型抗菌纳米纤维垫,该垫由静电纺丝壳聚糖/聚己内酯(CS/PCL)共混物负载15和30 wt.%的共聚物叶提取物(MCLE)制成。采用场发射扫描电镜(FESEM)、x射线衍射(XRD)分析、水接触角(WCA)测试、衰减全反射傅立叶变换红外(ATR-FTIR)光谱和力学性能测试等方法对纳米纤维毡的理化性能进行了评价。FESEM图像显示出均匀、无珠、光滑的纳米纤维垫,MCLE与聚合物之间具有良好的相容性。利用Image J软件计算纳米纤维席的平均直径,平均直径随着提取液浓度的增加而显著增加。通过ATR-FTIR光谱和XRD分析证实了MCLE在纳米纤维席子中的存在。纳米纤维垫的抗拉强度为6.31 ~ 12.47 MPa。在CS/PCL纳米纤维中加入MCLE增强了支架的亲水性,这可以通过减少接触角来证明。暴露于CS/PCL纳米纤维后,观察到大肠杆菌和金黄色葡萄球菌计数均显著减少0.5 log。MCLE (15 wt.%和30 wt.%)掺入的CS/PCL纳米纤维对两种细菌的细菌计数均显著减少0.8 log。结果表明,人造纳米纤维是一种很有前途的伤口敷料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信