{"title":"Theory of hyper-singular integrals and its application to the Navier-Stokes problem","authors":"A. Ramm","doi":"10.47443/cm.2020.0041","DOIUrl":null,"url":null,"abstract":"In this paper, the convolution integrals (cid:82) t 0 ( t − s ) λ − 1 b ( s ) ds with hyper-singular kernels are considered, where λ ≤ 0 and either b is a smooth function or b belongs to L 1 ( R + ) . For such λ , these integrals diverge classically even for smooth b . These convolution integrals are defined in this paper for negative non-integer values of λ . Integral equations and inequalities are considered with the hyper-singular kernels ( t − s ) λ − 1 + for λ ≤ 0 , where t λ + := 0 for t < 0 . In particular, one is interested in the value λ = − 14 because it is important for the Navier-Stokes problem (NSP). Integral equations of the type b ( t ) = b 0 ( t ) + (cid:82) t 0 ( t − s ) λ − 1 b ( s ) ds , λ ≤ 0 , are also studied. The solution of these equations is investigated, and the existence and uniqueness of the solution is proved for λ = − 14 . The obtained results are applied to the analysis of the NSP in the space R 3 without boundaries. It is proved that the NSP is contradictory in the following sense: even if one assumes that v ( x, 0) > 0 , one proves that the solution v ( x, t ) to the NSP has the property v ( x, 0) = 0 , in general. This paradox shows that the NSP is not a correct description of the fluid mechanics problem and it proves that the NSP does not have a solution, in general.","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":"7 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions To Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.47443/cm.2020.0041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, the convolution integrals (cid:82) t 0 ( t − s ) λ − 1 b ( s ) ds with hyper-singular kernels are considered, where λ ≤ 0 and either b is a smooth function or b belongs to L 1 ( R + ) . For such λ , these integrals diverge classically even for smooth b . These convolution integrals are defined in this paper for negative non-integer values of λ . Integral equations and inequalities are considered with the hyper-singular kernels ( t − s ) λ − 1 + for λ ≤ 0 , where t λ + := 0 for t < 0 . In particular, one is interested in the value λ = − 14 because it is important for the Navier-Stokes problem (NSP). Integral equations of the type b ( t ) = b 0 ( t ) + (cid:82) t 0 ( t − s ) λ − 1 b ( s ) ds , λ ≤ 0 , are also studied. The solution of these equations is investigated, and the existence and uniqueness of the solution is proved for λ = − 14 . The obtained results are applied to the analysis of the NSP in the space R 3 without boundaries. It is proved that the NSP is contradictory in the following sense: even if one assumes that v ( x, 0) > 0 , one proves that the solution v ( x, t ) to the NSP has the property v ( x, 0) = 0 , in general. This paradox shows that the NSP is not a correct description of the fluid mechanics problem and it proves that the NSP does not have a solution, in general.
期刊介绍:
Contributions to Discrete Mathematics (ISSN 1715-0868) is a refereed e-journal dedicated to publishing significant results in a number of areas of pure and applied mathematics. Based at the University of Calgary, Canada, CDM is free for both readers and authors, edited and published online and will be mirrored at the European Mathematical Information Service and the National Library of Canada.