{"title":"Parallel Newton–Chebyshev polynomial preconditioners for the conjugate gradient method","authors":"Luca Bergamaschi, Angeles Martinez Calomardo","doi":"10.1002/cmm4.1153","DOIUrl":null,"url":null,"abstract":"<p>In this note, we exploit polynomial preconditioners for the conjugate gradient method to solve large symmetric positive definite linear systems in a parallel environment. We put in connection a specialized Newton method to solve the matrix equation <i>X</i><sup>−1</sup> = <i>A</i> and the Chebyshev polynomials for preconditioning. We propose a simple modification of one parameter which avoids clustering of extremal eigenvalues in order to speed-up convergence. We provide results on very large matrices (up to 8.6 billion unknowns) in a parallel environment showing the efficiency of the proposed class of preconditioners.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1153","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
In this note, we exploit polynomial preconditioners for the conjugate gradient method to solve large symmetric positive definite linear systems in a parallel environment. We put in connection a specialized Newton method to solve the matrix equation X−1 = A and the Chebyshev polynomials for preconditioning. We propose a simple modification of one parameter which avoids clustering of extremal eigenvalues in order to speed-up convergence. We provide results on very large matrices (up to 8.6 billion unknowns) in a parallel environment showing the efficiency of the proposed class of preconditioners.