Homogeneous Analytic Center Cutting Plane Methods with Approximate Centers

IF 1.4 3区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Y. Nesterov, Olivier Péton, J. Vial
{"title":"Homogeneous Analytic Center Cutting Plane Methods with Approximate Centers","authors":"Y. Nesterov, Olivier Péton, J. Vial","doi":"10.1080/10556789908805753","DOIUrl":null,"url":null,"abstract":"In this paper we consider a homogeneous analytic center cutting plane method in a projective space. We describe a general scheme that uses a homogeneous oracle and computes an approximate analytic center at each iteration. This technique is applied to a convex feasibility problem, to variational inequalities, and to convex constrained minimization. We prove that these problems can be solved with the same order of complexity as in the case of exact analytic centers. For the feasibility and the minimization problems rough approximations suffice, but very high precision is required for the variational inequalities. We give an example of variational inequality where even the first analytic center needs to be computed with a precision matching the precision required for the solution.","PeriodicalId":54673,"journal":{"name":"Optimization Methods & Software","volume":"21 1","pages":"243-273"},"PeriodicalIF":1.4000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods & Software","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556789908805753","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper we consider a homogeneous analytic center cutting plane method in a projective space. We describe a general scheme that uses a homogeneous oracle and computes an approximate analytic center at each iteration. This technique is applied to a convex feasibility problem, to variational inequalities, and to convex constrained minimization. We prove that these problems can be solved with the same order of complexity as in the case of exact analytic centers. For the feasibility and the minimization problems rough approximations suffice, but very high precision is required for the variational inequalities. We give an example of variational inequality where even the first analytic center needs to be computed with a precision matching the precision required for the solution.
具有近似中心的齐次解析中心切割平面方法
本文研究了射影空间中的齐次解析中心切割平面方法。我们描述了一种使用齐次oracle并在每次迭代中计算近似解析中心的一般方案。该技术适用于一个凸可行性问题,变分不等式,和凸约束最小化。我们证明了这些问题可以用与精确解析中心相同的复杂度来解决。对于可行性和最小化问题,粗略的近似就足够了,但对于变分不等式,则需要很高的精度。我们给出了一个变分不等式的例子,其中即使第一个分析中心也需要以与解所需的精度相匹配的精度计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optimization Methods & Software
Optimization Methods & Software 工程技术-计算机:软件工程
CiteScore
4.50
自引率
0.00%
发文量
40
审稿时长
7 months
期刊介绍: Optimization Methods and Software publishes refereed papers on the latest developments in the theory and realization of optimization methods, with particular emphasis on the interface between software development and algorithm design. Topics include: Theory, implementation and performance evaluation of algorithms and computer codes for linear, nonlinear, discrete, stochastic optimization and optimal control. This includes in particular conic, semi-definite, mixed integer, network, non-smooth, multi-objective and global optimization by deterministic or nondeterministic algorithms. Algorithms and software for complementarity, variational inequalities and equilibrium problems, and also for solving inverse problems, systems of nonlinear equations and the numerical study of parameter dependent operators. Various aspects of efficient and user-friendly implementations: e.g. automatic differentiation, massively parallel optimization, distributed computing, on-line algorithms, error sensitivity and validity analysis, problem scaling, stopping criteria and symbolic numeric interfaces. Theoretical studies with clear potential for applications and successful applications of specially adapted optimization methods and software to fields like engineering, machine learning, data mining, economics, finance, biology, or medicine. These submissions should not consist solely of the straightforward use of standard optimization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信