A Closer Look at Disentangling in β-VAE

Harshvardhan Digvijay Sikka, Weishun Zhong, J. Yin, C. Pehlevan
{"title":"A Closer Look at Disentangling in β-VAE","authors":"Harshvardhan Digvijay Sikka, Weishun Zhong, J. Yin, C. Pehlevan","doi":"10.1109/IEEECONF44664.2019.9048921","DOIUrl":null,"url":null,"abstract":"In many data analysis tasks, it is beneficial to learn representations where each dimension is statistically independent and thus disentangled from the others. If data generating factors are also statistically independent, disentangled representations can be formed by Bayesian inference of latent variables. We examine a generalization of the Variational Autoencoder (VAE), β-VAE, for learning such representations using variational inference. β -VAE enforces conditional independence of its bottleneck neurons controlled by its hyperparameter β. This condition is in general not compatible with the statistical independence of latents. By providing analytical and numerical arguments, we show that this incompatibility leads to a non-monotonic inference performance in β -VAE with a finite optimal β .","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"36 1","pages":"888-895"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In many data analysis tasks, it is beneficial to learn representations where each dimension is statistically independent and thus disentangled from the others. If data generating factors are also statistically independent, disentangled representations can be formed by Bayesian inference of latent variables. We examine a generalization of the Variational Autoencoder (VAE), β-VAE, for learning such representations using variational inference. β -VAE enforces conditional independence of its bottleneck neurons controlled by its hyperparameter β. This condition is in general not compatible with the statistical independence of latents. By providing analytical and numerical arguments, we show that this incompatibility leads to a non-monotonic inference performance in β -VAE with a finite optimal β .
近距离观察β-VAE中的解缠
在许多数据分析任务中,学习每个维度在统计上是独立的,从而与其他维度分离的表示是有益的。如果数据产生因素也是统计独立的,则可以通过潜在变量的贝叶斯推理形成解纠缠表示。我们研究了变分自编码器(VAE)的推广,β-VAE,用于使用变分推理学习这种表示。β -VAE通过其超参数β控制瓶颈神经元的条件独立性。这个条件通常与潜在的统计独立性不相容。通过提供解析和数值论证,我们证明了这种不相容导致β -VAE具有有限最优β的非单调推理性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信