Non-linear wave propagation in a weakly compressible Kelvin-Voigt liquid containing bubbly clusters

IF 0.6 Q3 MATHEMATICS
Y. B. Chukkol, I. Bello, M. Abdullahi
{"title":"Non-linear wave propagation in a weakly compressible Kelvin-Voigt liquid containing bubbly clusters","authors":"Y. B. Chukkol, I. Bello, M. Abdullahi","doi":"10.35634/vm230112","DOIUrl":null,"url":null,"abstract":"The effect of bubble-bubble interaction on wave propagation in homogeneous weakly compressible viscoelastic bubbly flow is investigated using the reductive perturbation method. The bubble dynamics equation is derived using the kinetic energy conservation approach. The bubble dynamics and mixture equations are coupled with the equation of state for gas to investigate the shock wave propagation phenomenon in the mixture. A two-dimensional Korteweg-de VriesBurger (KdVB) equation in terms of a pressure profile is derived. It is found that the bubble-bubble interaction has no effect when using the parameters under our consideration.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm230112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of bubble-bubble interaction on wave propagation in homogeneous weakly compressible viscoelastic bubbly flow is investigated using the reductive perturbation method. The bubble dynamics equation is derived using the kinetic energy conservation approach. The bubble dynamics and mixture equations are coupled with the equation of state for gas to investigate the shock wave propagation phenomenon in the mixture. A two-dimensional Korteweg-de VriesBurger (KdVB) equation in terms of a pressure profile is derived. It is found that the bubble-bubble interaction has no effect when using the parameters under our consideration.
含气泡团的弱可压缩Kelvin-Voigt液体中的非线性波传播
采用约化微扰方法研究了均匀弱可压缩粘弹性气泡流中气泡-气泡相互作用对波传播的影响。利用动能守恒法推导了气泡动力学方程。将气泡动力学方程和混合方程与气体状态方程耦合,研究了激波在混合物中的传播现象。导出了以压力剖面表示的二维Korteweg-de VriesBurger (KdVB)方程。当使用我们考虑的参数时,发现气泡-气泡相互作用没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
40.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信