Structure of the space of $GL_4(\mathbb Z_2)$-coinvariants $\mathbb Z_2\otimes_{GL_4(\mathbb Z_2)} PH_*(\mathbb Z_2^4, \mathbb Z_2)$ in some generic degrees and its application to Singer's cohomological transfer

Dang Vo Phuc
{"title":"Structure of the space of $GL_4(\\mathbb Z_2)$-coinvariants $\\mathbb Z_2\\otimes_{GL_4(\\mathbb Z_2)} PH_*(\\mathbb Z_2^4, \\mathbb Z_2)$ in some generic degrees and its application to Singer's cohomological transfer","authors":"Dang Vo Phuc","doi":"10.31219/osf.io/4ckf8","DOIUrl":null,"url":null,"abstract":"Let $A$ denote the Steenrod algebra at the prime 2 and let $k = \\mathbb Z_2.$ An open problem of homotopy theory is to determine a minimal set of $A$-generators for the polynomial ring $P_q = k[x_1, \\ldots, x_q] = H^{*}(k^{q}, k)$ on $q$ generators $x_1, \\ldots, x_q$ with $|x_i|= 1.$ Equivalently, one can write down explicitly a basis for the graded vector space $Q^{\\otimes q} := k\\otimes_{A} P_q$ in each non-negative degree $n.$ This problem is the content of \"hit problem\" of Frank Peterson. We study the $q$-th Singer algebraic transfer $Tr_q^{A}$, which is a homomorphism from the space of $GL_q(k)$-coinvariant $k\\otimes _{GL_q(k)} P((P_q)_n^{*})$ of $Q^{\\otimes q}$ to the Adams $E_2$-term, ${\\rm Ext}_{A}^{q, q+n}(k, k).$ Here $GL_q(k)$ is the general linear group of degree $q$ over the field $k,$ and $P((P_q)_n^{*})$ is the primitive part of $(P_q)^{*}_n$ under the action of $A.$ The Singer transfer is one of the useful tools for describing mysterious Ext groups. In the present study, by using techniques of the hit problem of four variables, we explicitly determine the structure of the spaces $k\\otimes _{GL_4(k)} P((P_4)_{n}^{*})$ in some generic degrees $n.$ Applying these results and the representation of the fourth transfer over the lambda algebra, we show that $Tr_4^{A}$ is an isomorphism in respective degrees. These new results confirmed Singer's conjecture for the monomorphism of the rank $4$ transfer. Our approach is different from that of Singer.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31219/osf.io/4ckf8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $A$ denote the Steenrod algebra at the prime 2 and let $k = \mathbb Z_2.$ An open problem of homotopy theory is to determine a minimal set of $A$-generators for the polynomial ring $P_q = k[x_1, \ldots, x_q] = H^{*}(k^{q}, k)$ on $q$ generators $x_1, \ldots, x_q$ with $|x_i|= 1.$ Equivalently, one can write down explicitly a basis for the graded vector space $Q^{\otimes q} := k\otimes_{A} P_q$ in each non-negative degree $n.$ This problem is the content of "hit problem" of Frank Peterson. We study the $q$-th Singer algebraic transfer $Tr_q^{A}$, which is a homomorphism from the space of $GL_q(k)$-coinvariant $k\otimes _{GL_q(k)} P((P_q)_n^{*})$ of $Q^{\otimes q}$ to the Adams $E_2$-term, ${\rm Ext}_{A}^{q, q+n}(k, k).$ Here $GL_q(k)$ is the general linear group of degree $q$ over the field $k,$ and $P((P_q)_n^{*})$ is the primitive part of $(P_q)^{*}_n$ under the action of $A.$ The Singer transfer is one of the useful tools for describing mysterious Ext groups. In the present study, by using techniques of the hit problem of four variables, we explicitly determine the structure of the spaces $k\otimes _{GL_4(k)} P((P_4)_{n}^{*})$ in some generic degrees $n.$ Applying these results and the representation of the fourth transfer over the lambda algebra, we show that $Tr_4^{A}$ is an isomorphism in respective degrees. These new results confirmed Singer's conjecture for the monomorphism of the rank $4$ transfer. Our approach is different from that of Singer.
$GL_4(\mathbb Z_2)$-协变量$\mathbb Z_2\otimes_{GL_4(\mathbb Z_2)} PH_*(\mathbb Z_2^4, \mathbb Z_2)$在某些一般度上的空间结构及其在Singer上同调转移中的应用
设$A表示' 2处的Steenrod代数设$k = \mathbb Z_2。对于多项式环$P_q = k[x_1, \ldots, x_q] = H^{*}(k^{q}, k)$,在$q$ generators $x_1, \ldots, x_q$上,当$|x_i|= 1时,确定$ a $-生成元的最小集。同样地,我们可以显式地写出梯度向量空间$Q^{\otimes Q}:= k\otimes_{a} P_q$在每一个非负次$n上的基。这个问题是Frank Peterson的“hit problem”的内容。研究了$q$-第一个Singer代数迁移$Tr_q^{A}$,它是$q$的$GL_q(k)$-协变量$k\otimes _{GL_q(k)} P((P_q)_n^{*})$空间到$ Adams $E_2$-项${\rm Ext}_{A}^{q, q+n}(k, k)的同态。$GL_q(k)$是域$k,$上阶$q$的一般线性群,$ P((P_q)_n^{*})$是$(P_q)^{*}_n$在$A作用下的本原部分。Singer转移是描述神秘Ext组的有用工具之一。本文利用四变量命中问题的技术,明确地确定了空间$k\otimes _{GL_4(k)} P((P_4)_{n}^{*})$在某些泛型度$n上的结构。应用这些结果和在λ代数上的第四次转移的表示,我们证明了$Tr_4^{A}$在各自的度数上是同构的。这些新结果证实了Singer关于秩$4$转移的单态猜想。我们的方法与辛格的不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信