A new SAS ® macro for flexible parametric survival modeling: applications to clinical trials and surveillance data

R. Dewar, I. Khan
{"title":"A new SAS ® macro for flexible parametric survival modeling: applications to clinical trials and surveillance data","authors":"R. Dewar, I. Khan","doi":"10.4155/CLI.15.54","DOIUrl":null,"url":null,"abstract":"Survival analysis is often performed using the Cox proportional hazards model. Parametric models are useful in several applications, including health economic evaluation, cancer surveillance and event prediction. Flexible parametric models extend standard parametric models (e.g., Weibull) to increase the flexibility of the shape of the hazard function. We present a new SAS® macro for implementing flexible parametric models with a similar functionality to that of Stata®, with examples using data from cancer surveillance and clinical trials. Results from SAS were identical with similar computational time to Stata. The flexible parametric approach to modeling survival data is shown to be superior to standard parametric methods. This SAS macro will facilitate an increase in the use of flexible parametric models.","PeriodicalId":10369,"journal":{"name":"Clinical investigation","volume":"2 1","pages":"855-866"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4155/CLI.15.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Survival analysis is often performed using the Cox proportional hazards model. Parametric models are useful in several applications, including health economic evaluation, cancer surveillance and event prediction. Flexible parametric models extend standard parametric models (e.g., Weibull) to increase the flexibility of the shape of the hazard function. We present a new SAS® macro for implementing flexible parametric models with a similar functionality to that of Stata®, with examples using data from cancer surveillance and clinical trials. Results from SAS were identical with similar computational time to Stata. The flexible parametric approach to modeling survival data is shown to be superior to standard parametric methods. This SAS macro will facilitate an increase in the use of flexible parametric models.
一个新的SAS®宏灵活的参数生存建模:应用于临床试验和监测数据
生存分析通常使用Cox比例风险模型进行。参数模型在健康经济评估、癌症监测和事件预测等多个领域都很有用。柔性参数模型扩展了标准参数模型(如威布尔模型),增加了危险函数形状的灵活性。我们提出了一个新的SAS®宏,用于实现具有与Stata®类似功能的灵活参数模型,并使用来自癌症监测和临床试验的数据作为示例。SAS的计算结果与Stata相同,计算时间相近。对生存数据建模的灵活参数化方法优于标准参数化方法。这个SAS宏将有助于增加灵活参数模型的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信