Experimental Investigation, Porosity-Permeability Modelling, and Artificial Neural Network Prediction of CO2 Injectivity Change for Sequestration

M. A. Md Yusof, Iqmal Irsyad Mohammad Fuad, Nur Asyraf Md Akhir, Mohamad Arif Ibrahim, M. A. Mohamed, D. A. Maharsi
{"title":"Experimental Investigation, Porosity-Permeability Modelling, and Artificial Neural Network Prediction of CO2 Injectivity Change for Sequestration","authors":"M. A. Md Yusof, Iqmal Irsyad Mohammad Fuad, Nur Asyraf Md Akhir, Mohamad Arif Ibrahim, M. A. Mohamed, D. A. Maharsi","doi":"10.4043/31666-ms","DOIUrl":null,"url":null,"abstract":"\n CO2 sequestration in saline aquifer is a promising approach to effectively secure the anthropogenic CO2 gas. Complex fluid-rock interaction processes take place during the injection of CO2 would disrupt the thermodynamic equilibrium of CO2 injectivity at near wellbore. In this study, a comprehensive investigation on the CO2 injectivity change of different injection flow rates and brine salinity was performed using core flooding experiments, permeability change prediction using (Kozeny-Carman and Hagen-Poiseuille models) and artificial neural network model (ANN). Core flooding experiments revealed CO2 injectivity impairment increased with increasing brine salinity, with Hagen-Poiseuille being the most fitted model with R2 of 0.935. However, all porosity-permeability models failed to give a good prediction at changing injection flow rate with R2 is well below 0.4. The adopted ANN model showed good agreement with the experimental data at varying brine salinity and injection flow rates. The utilization of ANN for such prediction procedure can reduce the number of experiment, operating cost and provide reasonable predictions compared to existing analytical models.","PeriodicalId":11217,"journal":{"name":"Day 4 Fri, March 25, 2022","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Fri, March 25, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31666-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 sequestration in saline aquifer is a promising approach to effectively secure the anthropogenic CO2 gas. Complex fluid-rock interaction processes take place during the injection of CO2 would disrupt the thermodynamic equilibrium of CO2 injectivity at near wellbore. In this study, a comprehensive investigation on the CO2 injectivity change of different injection flow rates and brine salinity was performed using core flooding experiments, permeability change prediction using (Kozeny-Carman and Hagen-Poiseuille models) and artificial neural network model (ANN). Core flooding experiments revealed CO2 injectivity impairment increased with increasing brine salinity, with Hagen-Poiseuille being the most fitted model with R2 of 0.935. However, all porosity-permeability models failed to give a good prediction at changing injection flow rate with R2 is well below 0.4. The adopted ANN model showed good agreement with the experimental data at varying brine salinity and injection flow rates. The utilization of ANN for such prediction procedure can reduce the number of experiment, operating cost and provide reasonable predictions compared to existing analytical models.
二氧化碳吸收率变化的实验研究、孔渗模型和人工神经网络预测
咸水层CO2固存是有效保护人为CO2气体的一种很有前途的方法。在注入二氧化碳过程中,复杂的流体-岩石相互作用过程会破坏近井处二氧化碳注入的热力学平衡。采用岩心驱油实验、Kozeny-Carman模型和Hagen-Poiseuille模型预测渗透率变化以及人工神经网络模型(ANN)等方法,对不同注入流速和盐水盐度下的CO2注入能力变化进行了综合研究。岩心驱油实验表明,随着盐水盐度的增加,CO2注入能力受损程度增大,hagenpoiseuille模型拟合程度最高,R2为0.935。然而,当R2远低于0.4时,所有的孔隙度-渗透率模型都不能很好地预测注入流量的变化。所采用的人工神经网络模型在不同盐水盐度和注入流量下与实验数据吻合较好。与现有的分析模型相比,利用人工神经网络进行预测可以减少实验次数和运行成本,并提供合理的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信