Artifacts Mitigation in Sensors for Spasticity Assessment

Cagri Yalcin, M. Sam, Yifeng Bu, Moran Amit, A. Skalsky, Michael C. Yip, T. Ng, H. Garudadri
{"title":"Artifacts Mitigation in Sensors for Spasticity Assessment","authors":"Cagri Yalcin, M. Sam, Yifeng Bu, Moran Amit, A. Skalsky, Michael C. Yip, T. Ng, H. Garudadri","doi":"10.1002/aisy.202000106","DOIUrl":null,"url":null,"abstract":"Spasticity is a pathological condition that can occur in people with neuromuscular disorders. Objective, repeatable metrics are needed for evaluation to provide appropriate treatment and to monitor patient condition. Herein, an instrumented bimodal glove with force and movement sensors for spasticity assessment is presented. To mitigate noise artifacts, machine learning techniques are used, specifically a multitask neural network, to calibrate the instrumented glove signals against the ground truth from sensors integrated in a robotic arm. The motorized robotic arm system offers adjustable resistance to simulate different levels of muscle stiffness in spasticity, and the sensors on the robot provide ground‐truth measurements of angular displacement and force applied during flexion and extension maneuvers. The robotic sensor measurements are used to train the instrumented glove data through multitask learning. After processing through the neural network, the Pearson correlation coefficients between the processed signals and the ground truth are above 0.92, demonstrating successful signal calibration and noise mitigation.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"695 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202000106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Spasticity is a pathological condition that can occur in people with neuromuscular disorders. Objective, repeatable metrics are needed for evaluation to provide appropriate treatment and to monitor patient condition. Herein, an instrumented bimodal glove with force and movement sensors for spasticity assessment is presented. To mitigate noise artifacts, machine learning techniques are used, specifically a multitask neural network, to calibrate the instrumented glove signals against the ground truth from sensors integrated in a robotic arm. The motorized robotic arm system offers adjustable resistance to simulate different levels of muscle stiffness in spasticity, and the sensors on the robot provide ground‐truth measurements of angular displacement and force applied during flexion and extension maneuvers. The robotic sensor measurements are used to train the instrumented glove data through multitask learning. After processing through the neural network, the Pearson correlation coefficients between the processed signals and the ground truth are above 0.92, demonstrating successful signal calibration and noise mitigation.
缓解痉挛评估传感器中的伪影
痉挛是神经肌肉疾病患者可能出现的一种病理状态。目的:需要可重复的指标进行评估,以提供适当的治疗和监测患者的病情。本文提出了一种带有力和运动传感器的仪器双峰手套,用于痉挛评估。为了减轻噪声伪像,使用了机器学习技术,特别是多任务神经网络,根据集成在机械臂中的传感器的地面真实情况校准仪表手套信号。电动机械臂系统提供可调节的阻力,以模拟痉挛时不同程度的肌肉僵硬,机器人上的传感器提供在屈伸动作期间施加的角位移和力的地面真实测量。机器人传感器测量值通过多任务学习训练手套数据。经过神经网络处理后,处理后的信号与地面真值之间的Pearson相关系数均在0.92以上,表明信号标定成功,降噪成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信