Some convergence results for nonlinear Baskakov-Durrmeyer operators

IF 1 Q1 MATHEMATICS
H. Altin
{"title":"Some convergence results for nonlinear Baskakov-Durrmeyer operators","authors":"H. Altin","doi":"10.15330/cmp.15.1.95-103","DOIUrl":null,"url":null,"abstract":"This paper is an introduction to a sequence of nonlinear Baskakov-Durrmeyer operators $(NBD_{n})$ of the form \\[ (NBD_{n})(f;x) =\\int_{0}^\\infty K_{n}(x,t,f(t))\\,dt \\] with $x\\in [0,\\infty)$ and $n\\in\\mathbb{N}$. While $K_{n}(x,t,u)$ provide convenient assumptions, these operators work on bounded functions, which are defined on all finite subintervals of $[0,\\infty)$. This paper comprise some pointwise convergence results for these operators in certain functional spaces. As well as this study can be seen as a continuation of studies about nonlinear operators, it is the first study on nonlinear Baskakov-Durrmeyer or modified Baskakov operators, while there were more papers on linear part of the operators.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.1.95-103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is an introduction to a sequence of nonlinear Baskakov-Durrmeyer operators $(NBD_{n})$ of the form \[ (NBD_{n})(f;x) =\int_{0}^\infty K_{n}(x,t,f(t))\,dt \] with $x\in [0,\infty)$ and $n\in\mathbb{N}$. While $K_{n}(x,t,u)$ provide convenient assumptions, these operators work on bounded functions, which are defined on all finite subintervals of $[0,\infty)$. This paper comprise some pointwise convergence results for these operators in certain functional spaces. As well as this study can be seen as a continuation of studies about nonlinear operators, it is the first study on nonlinear Baskakov-Durrmeyer or modified Baskakov operators, while there were more papers on linear part of the operators.
非线性Baskakov-Durrmeyer算子的一些收敛性结果
本文介绍了一类非线性Baskakov-Durrmeyer算子序列 $(NBD_{n})$ 形式的 \[ (NBD_{n})(f;x) =\int_{0}^\infty K_{n}(x,t,f(t))\,dt \] 有 $x\in [0,\infty)$ 和 $n\in\mathbb{N}$. 而 $K_{n}(x,t,u)$ 提供方便的假设,这些运算符作用于有界函数,这些函数定义在的所有有限子区间上 $[0,\infty)$. 本文给出了这些算子在一定泛函空间中的一些逐点收敛结果。本研究可以看作是对非线性算子研究的延续,这是对非线性Baskakov- durrmeyer或修正Baskakov算子的首次研究,而对算子线性部分的研究较多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信