R. Savrai, S. Gladkovsky, S. Lepikhin, Yu. M. Kolobylin
{"title":"Approaches to the development of wear-resistant laminatedmetal composites","authors":"R. Savrai, S. Gladkovsky, S. Lepikhin, Yu. M. Kolobylin","doi":"10.17804/2410-9908.2021.5.24-35","DOIUrl":null,"url":null,"abstract":"Layered metal composites made of dissimilar metals and alloys occupy a special place among modern composite materials. In particular, their use is considered promising when high strength, fatigue resistance, and wear resistance are required. However, there are few data on the abrasive wear resistance of such composites, and further study is necessary. In this paper, an attempt is made to formulate some approaches to the development of wear-resistant laminated metal composites in order to promote more detailed research. For this purpose, the abrasive wear resistance at room (+25 °C) and cryogenic (−196 °C) temperatures of a layered metal composite consisting of low-alloy and maraging steels was studied. The composite was obtained by explosive welding. It is shown that the wear resistance of the composite is determined by the combined influence of a number of factors, namely the presence of interlayer boundaries, the structural state, hardness, and toughness of the steels. It is concluded that, for better wear resistance of a layered composite, the dissimilar layers must wear out evenly under existing environmental conditions.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics, Resource and Mechanics of materials and structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17804/2410-9908.2021.5.24-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Layered metal composites made of dissimilar metals and alloys occupy a special place among modern composite materials. In particular, their use is considered promising when high strength, fatigue resistance, and wear resistance are required. However, there are few data on the abrasive wear resistance of such composites, and further study is necessary. In this paper, an attempt is made to formulate some approaches to the development of wear-resistant laminated metal composites in order to promote more detailed research. For this purpose, the abrasive wear resistance at room (+25 °C) and cryogenic (−196 °C) temperatures of a layered metal composite consisting of low-alloy and maraging steels was studied. The composite was obtained by explosive welding. It is shown that the wear resistance of the composite is determined by the combined influence of a number of factors, namely the presence of interlayer boundaries, the structural state, hardness, and toughness of the steels. It is concluded that, for better wear resistance of a layered composite, the dissimilar layers must wear out evenly under existing environmental conditions.