Intelligent cloud algorithms for load balancing problems: A survey

Aya A. Salah Farrag, Safia A. Mahmoud, El-Sayed M. El-Horbaty
{"title":"Intelligent cloud algorithms for load balancing problems: A survey","authors":"Aya A. Salah Farrag, Safia A. Mahmoud, El-Sayed M. El-Horbaty","doi":"10.1109/INTELCIS.2015.7397223","DOIUrl":null,"url":null,"abstract":"Cloud computing services are growing very fast especially with the high demand of mobile and online applications (Apps) and services. This exponential growth emphasis on the need of minimizing the makespan scheduling and utilizing the resources efficiently based on dynamic environment. Accordingly, many load balancing algorithms have been developed to overcome these issues using intelligent optimization methodologies, such as Genetic Algorithms (GA), Ant Colony optimization (ACO), Artificial Bee Colony (ABC) and Particle Swarm Optimization (PSO). This paper surveys the above intelligent optimization techniques and focuses on the Ant Lion Optimizer (ALO) intelligent technique, also it proposes an implementation of ALO based cloud computing environment as efficient algorithm that expected to supplies better outcomes in load balancing.","PeriodicalId":6478,"journal":{"name":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELCIS.2015.7397223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Cloud computing services are growing very fast especially with the high demand of mobile and online applications (Apps) and services. This exponential growth emphasis on the need of minimizing the makespan scheduling and utilizing the resources efficiently based on dynamic environment. Accordingly, many load balancing algorithms have been developed to overcome these issues using intelligent optimization methodologies, such as Genetic Algorithms (GA), Ant Colony optimization (ACO), Artificial Bee Colony (ABC) and Particle Swarm Optimization (PSO). This paper surveys the above intelligent optimization techniques and focuses on the Ant Lion Optimizer (ALO) intelligent technique, also it proposes an implementation of ALO based cloud computing environment as efficient algorithm that expected to supplies better outcomes in load balancing.
负载平衡问题的智能云算法:综述
云计算服务增长非常快,特别是随着移动和在线应用程序和服务的高需求。这种指数增长强调了最小化完工时间调度和基于动态环境的资源有效利用的需求。因此,许多负载平衡算法已经开发出来,以克服这些问题,使用智能优化方法,如遗传算法(GA),蚁群优化(ACO),人工蜂群(ABC)和粒子群优化(PSO)。本文综述了上述智能优化技术,重点介绍了蚂蚁狮子优化器(ALO)智能优化技术,并提出了一种基于ALO的云计算环境实现算法,该算法有望提供更好的负载平衡结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信