A homotopy recursive-in-model-order algorithm for weighted Lasso

Zbyněk Koldovský, P. Tichavský
{"title":"A homotopy recursive-in-model-order algorithm for weighted Lasso","authors":"Zbyněk Koldovský, P. Tichavský","doi":"10.1109/ICASSP.2014.6854383","DOIUrl":null,"url":null,"abstract":"A fast algorithm to solve weighted ℓ1-minimization problems with N × N square “measuring” matrices is proposed. The method is recursive-in-model-order and tracks a homotopy path that goes through solutions of the optimization sub-tasks in the order of 1 through N. It thus yields solutions for all model orders and performs this task faster than the other compared methods. We show applications of this method in sparse linear system identification, in particular, the estimation of sparse target-cancellation filters for audio source separation.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"50 1","pages":"4151-4155"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A fast algorithm to solve weighted ℓ1-minimization problems with N × N square “measuring” matrices is proposed. The method is recursive-in-model-order and tracks a homotopy path that goes through solutions of the optimization sub-tasks in the order of 1 through N. It thus yields solutions for all model orders and performs this task faster than the other compared methods. We show applications of this method in sparse linear system identification, in particular, the estimation of sparse target-cancellation filters for audio source separation.
加权Lasso的同伦模型阶递归算法
提出了一种求解N × N平方“测量”矩阵的加权最小化问题的快速算法。该方法是模型阶递归的,并跟踪一条同伦路径,该路径以1到n的顺序遍历优化子任务的解,因此产生所有模型阶的解,并且比其他比较方法更快地执行此任务。我们展示了该方法在稀疏线性系统识别中的应用,特别是用于音频源分离的稀疏目标抵消滤波器的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信