L. Fomina, Christopher C. Leon, M. Bizarro, A. Baeza, V. Gómez-Vidales, L. E. Sansores, R. Salcedo
{"title":"TTF derivative of 2,5-aromatic disubstituted pyrroles, experimental and theoretical study","authors":"L. Fomina, Christopher C. Leon, M. Bizarro, A. Baeza, V. Gómez-Vidales, L. E. Sansores, R. Salcedo","doi":"10.1557/OPL.2016.73","DOIUrl":null,"url":null,"abstract":"In the last decades the interest in organic conductors has growth, so they have become the object of study of many research groups that are interested in developing new materials with important conducting properties. The charge transfer complexes (CTC) represent an important kind of organic conductors, because they exhibit high conductivity values, as well as versatility for their design. In this work, the charge transfer complex (CTC) formed by substituted pyrrole and tetrathiofulvalene (TTF) was obtained by means electrochemical synthesis, the resultant colored mix was characterized by Mass spectrometry, NMR and EPR studies, its intrinsic electronic behavior was measured by a four point probe method, besides theoretical calculations were carried out on the possible structures of the resultant molecular adduct. All the results show that there is a net transfer of an electron between both organic moieties in a solution giving place to a semiconductor species.","PeriodicalId":18884,"journal":{"name":"MRS Proceedings","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/OPL.2016.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the last decades the interest in organic conductors has growth, so they have become the object of study of many research groups that are interested in developing new materials with important conducting properties. The charge transfer complexes (CTC) represent an important kind of organic conductors, because they exhibit high conductivity values, as well as versatility for their design. In this work, the charge transfer complex (CTC) formed by substituted pyrrole and tetrathiofulvalene (TTF) was obtained by means electrochemical synthesis, the resultant colored mix was characterized by Mass spectrometry, NMR and EPR studies, its intrinsic electronic behavior was measured by a four point probe method, besides theoretical calculations were carried out on the possible structures of the resultant molecular adduct. All the results show that there is a net transfer of an electron between both organic moieties in a solution giving place to a semiconductor species.