{"title":"Fast geometric parameter sweep of FEM models via a nonlinear BT-POD model reduction","authors":"Wei Wang, M. Vouvakis","doi":"10.1109/APS.2011.5997024","DOIUrl":null,"url":null,"abstract":"A finite element method (FEM) model-order reduction (MOR) methodology for the fast parametric sweep of geometrical features is presented. The proposed method first linearizes the otherwise non-linear FEM matrix dependence with respect to the geometry variation, and then uses a uniformly sampled balanced truncation proper orthogonal decomposition (BT-POD) reduction algorithm to expediently sweep over the parametric geometry space. The approach avoids slow re-meshing and full matrix reassembly by using mesh morphing approaches. Moreover, BT-POD is known to provide close to optimal size reduced problems using only a small number of samples, thus minimizing the the number of full-model solutions. Numerical results on two large-scale filter design examples are used to study the accuracy and efficiency of the proposed method.","PeriodicalId":6449,"journal":{"name":"2011 IEEE International Symposium on Antennas and Propagation (APSURSI)","volume":"31 1","pages":"2472-2475"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Antennas and Propagation (APSURSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2011.5997024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A finite element method (FEM) model-order reduction (MOR) methodology for the fast parametric sweep of geometrical features is presented. The proposed method first linearizes the otherwise non-linear FEM matrix dependence with respect to the geometry variation, and then uses a uniformly sampled balanced truncation proper orthogonal decomposition (BT-POD) reduction algorithm to expediently sweep over the parametric geometry space. The approach avoids slow re-meshing and full matrix reassembly by using mesh morphing approaches. Moreover, BT-POD is known to provide close to optimal size reduced problems using only a small number of samples, thus minimizing the the number of full-model solutions. Numerical results on two large-scale filter design examples are used to study the accuracy and efficiency of the proposed method.