{"title":"Biconservative Lorentz Hypersurfaces with at Least Three Principal Curvatures","authors":"F. Pashaie","doi":"10.5556/j.tkjm.54.2023.4876","DOIUrl":null,"url":null,"abstract":"Biconservative submanifolds, with important role in mathematical physics and differential geometry, arise as the conservative stress-energy tensor associated to the variational problem of biharmonic submanifolds. Many examples of biconservative hypersurfaces have constant mean curvature. A famous conjecture of Bang-Yen Chen on Euclidean spaces says that everybiharmonic submanifold has null mean curvature. Inspired by Chen conjecture, we study biconservative Lorentz submanifolds of the Minkowski spaces. Although the conjecture has not been generally confirmed, it has been proven in many cases, and this has led to its spread to various types of submenifolds. As an extension, we consider a advanced version of the conjecture (namely, $L_1$-conjecture) on Lorentz hypersurfaces of the pseudo-Euclidean space $\\mathbb{M}^5 :=\\mathbb{E}^5_1$ (i.e. the Minkowski 5-space). We show every $L_1$-biconservative Lorentz hypersurface of $\\mathbb{M}^5$ with constant mean curvature and at least three principal curvatures has constant second mean curvature.","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/j.tkjm.54.2023.4876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Biconservative submanifolds, with important role in mathematical physics and differential geometry, arise as the conservative stress-energy tensor associated to the variational problem of biharmonic submanifolds. Many examples of biconservative hypersurfaces have constant mean curvature. A famous conjecture of Bang-Yen Chen on Euclidean spaces says that everybiharmonic submanifold has null mean curvature. Inspired by Chen conjecture, we study biconservative Lorentz submanifolds of the Minkowski spaces. Although the conjecture has not been generally confirmed, it has been proven in many cases, and this has led to its spread to various types of submenifolds. As an extension, we consider a advanced version of the conjecture (namely, $L_1$-conjecture) on Lorentz hypersurfaces of the pseudo-Euclidean space $\mathbb{M}^5 :=\mathbb{E}^5_1$ (i.e. the Minkowski 5-space). We show every $L_1$-biconservative Lorentz hypersurface of $\mathbb{M}^5$ with constant mean curvature and at least three principal curvatures has constant second mean curvature.
期刊介绍:
To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.