{"title":"Laplace Transform of nested analytic functions via Bell’s polynomials","authors":"P. Ricci, D. Caratelli, S. Pinelas","doi":"10.31197/atnaa.1187617","DOIUrl":null,"url":null,"abstract":"Bell's polynomials have been used in many different fields, ranging from number theory to operators theory. In this article we show a method to compute the Laplace Transform (LT) of nested analytic functions. To this aim, we provide a table of the first few values of the complete Bell's polynomials, which are then used to evaluate the LT of composite exponential functions. Furthermore a code for approximating the Laplace Transform of general analytic composite functions is created and presented. A graphical verification of the proposed technique is illustrated in the last section.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.1187617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bell's polynomials have been used in many different fields, ranging from number theory to operators theory. In this article we show a method to compute the Laplace Transform (LT) of nested analytic functions. To this aim, we provide a table of the first few values of the complete Bell's polynomials, which are then used to evaluate the LT of composite exponential functions. Furthermore a code for approximating the Laplace Transform of general analytic composite functions is created and presented. A graphical verification of the proposed technique is illustrated in the last section.