Min Huang , Junyan Ren , Caiming Li , Zhengbiao Gu , Yan Hong , Li Cheng , Zhaofeng Li
{"title":"Double mutations enhance β-cyclization activity of cyclodextrin glycosyltransferase from Bacillus circulans","authors":"Min Huang , Junyan Ren , Caiming Li , Zhengbiao Gu , Yan Hong , Li Cheng , Zhaofeng Li","doi":"10.1016/j.molcatb.2016.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>A major drawback to the industrial production of β-cyclodextrin is the limited β-cyclization activity of cyclodextrin glycosyltransferase (CGTase). Here, we construct mutants of the β-CGTase from <em>Bacillus circulans</em> strain STB01 that contain single substitutions at Tyr89 and double substitutions at Tyr89 and Asp577. The results show that the double mutants Y89G/D577R, Y89D/D577R, and Y89N/D577R display enhanced β-cyclization activity, and have higher β-cyclization activity than that of the three single Tyr89 mutants. The double mutant Y89D/D577R exhibited the highest β-cyclization activity and β-cyclodextrin production, increasing 35.1% and 12.4% compared with those of the wild-type CGTase, respectively. The β-cyclization activity of double mutant Y89D/D577R is also higher than that of the single mutant D577R, which had the highest β-cyclization activity among the mutants prepared in our previous studies. The enhanced β-cyclization activity of these mutants may be a result of intermolecular interactions that stabilize intermediates in the β-cyclization reaction. Thus, double mutant Y89D/D577R is much more suitable for industrial β-cyclodextrin production than the wild-type enzyme.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"133 ","pages":"Pages S100-S105"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.12.002","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117716302867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
A major drawback to the industrial production of β-cyclodextrin is the limited β-cyclization activity of cyclodextrin glycosyltransferase (CGTase). Here, we construct mutants of the β-CGTase from Bacillus circulans strain STB01 that contain single substitutions at Tyr89 and double substitutions at Tyr89 and Asp577. The results show that the double mutants Y89G/D577R, Y89D/D577R, and Y89N/D577R display enhanced β-cyclization activity, and have higher β-cyclization activity than that of the three single Tyr89 mutants. The double mutant Y89D/D577R exhibited the highest β-cyclization activity and β-cyclodextrin production, increasing 35.1% and 12.4% compared with those of the wild-type CGTase, respectively. The β-cyclization activity of double mutant Y89D/D577R is also higher than that of the single mutant D577R, which had the highest β-cyclization activity among the mutants prepared in our previous studies. The enhanced β-cyclization activity of these mutants may be a result of intermolecular interactions that stabilize intermediates in the β-cyclization reaction. Thus, double mutant Y89D/D577R is much more suitable for industrial β-cyclodextrin production than the wild-type enzyme.
期刊介绍:
Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation.
Papers should report novel and significant advances in one or more of the following topics;
Applied and fundamental studies of enzymes used for biocatalysis;
Industrial applications of enzymatic processes, e.g. in fine chemical synthesis;
Chemo-, regio- and enantioselective transformations;
Screening for biocatalysts;
Integration of biocatalytic and chemical steps in organic syntheses;
Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies;
Enzyme immobilization and stabilization, particularly in non-conventional media;
Bioprocess engineering aspects, e.g. membrane bioreactors;
Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification;
Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity;
Biomimetic studies related to enzymatic transformations.