Generalised Atiyah’s theory of principal connections

IF 0.5 Q3 MATHEMATICS
Jiří Nárožný
{"title":"Generalised Atiyah’s theory of principal connections","authors":"Jiří Nárožný","doi":"10.5817/am2022-4-241","DOIUrl":null,"url":null,"abstract":". This is a condensed report from the ongoing project aimed on higher principal connections and their relation with higher differential cohomology theories and generalised short exact sequences of L ∞ algebroids. A historical stem for our project is a paper from sir M. Atiyah who observed a bijective correspondence between data for a horizontal distribution on a fibre bundle and a set of sections for a certain splitting short exact sequence of Lie algebroids, nowadays called the Atiyah sequence . In a meantime there was developed quite firm understanding of the category theory and in the last two decades also the higher category/topos theory. This conceptual framework allows us to examine principal connections and higher principal connections in a prism of differential cohomology theories. In this text we cover mostly the motivational part of the project which resides in searching for a common language of these two successful approaches to connections. From the reasons of conciseness and compactness we have not included computations and several lengthy proofs.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"11 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2022-4-241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. This is a condensed report from the ongoing project aimed on higher principal connections and their relation with higher differential cohomology theories and generalised short exact sequences of L ∞ algebroids. A historical stem for our project is a paper from sir M. Atiyah who observed a bijective correspondence between data for a horizontal distribution on a fibre bundle and a set of sections for a certain splitting short exact sequence of Lie algebroids, nowadays called the Atiyah sequence . In a meantime there was developed quite firm understanding of the category theory and in the last two decades also the higher category/topos theory. This conceptual framework allows us to examine principal connections and higher principal connections in a prism of differential cohomology theories. In this text we cover mostly the motivational part of the project which resides in searching for a common language of these two successful approaches to connections. From the reasons of conciseness and compactness we have not included computations and several lengthy proofs.
推广了Atiyah的主要联系理论
. 本文是L∞代数群的高主连接及其与高微分上同调理论和广义短精确序列的关系研究项目的浓缩报告。我们项目的历史渊源是M. Atiyah先生的一篇论文,他观察到纤维束上水平分布的数据与李代数群的某一分裂短精确序列的一组截面之间的双客观对应关系,现在称为Atiyah序列。与此同时,人们对范畴理论有了相当坚定的认识,在过去的二十年里,更高的范畴/拓扑理论也得到了发展。这个概念框架允许我们在微分上同理论的棱镜中检查主连接和高级主连接。在这篇文章中,我们主要涵盖了这个项目的动机部分,它存在于寻找这两种成功的连接方法的共同语言。出于简洁和紧凑的原因,我们没有包括计算和几个冗长的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信