Synthesis and Physico‐Chemical Studies on Iron(II,III,III) and Cobalt(II) Thiocarboxylates

B. Baranwal, Tarkeshwar Gupta, Deen Dayal Upadhyay
{"title":"Synthesis and Physico‐Chemical Studies on Iron(II,III,III) and Cobalt(II) Thiocarboxylates","authors":"B. Baranwal, Tarkeshwar Gupta, Deen Dayal Upadhyay","doi":"10.1081/SIM-200030186","DOIUrl":null,"url":null,"abstract":"Abstract A series of iron(II,III,III) and cobalt(II) complexes of thiocarboxylic acids of the general formulas [FeIIFe2 IIIO(SOCR)6(L)3] and [Co(SOCR)2(L)2] (R = C2H5 or C(CH3)3 and L = EtOH or py) have been synthesized and characterized by elemental and thermogravimetric analyses, spectral (infrared, electronic, and Mössbauer) studies, molar conductance, magnetic susceptibility, and molecular weight determinations. The electronic spectral data suggested an octahedral environment around the metal ion in both the iron as well as the cobalt complexes. A band around 13,800 cm−1 in the electronic spectra of the iron complexes indicated intervalence‐transfer between Fe(II) and Fe(III) moieties. A bridging mode of coordination could be assigned for the thiocarboxylate anions in the iron complexes and a chelating mode of coordination for the cobalt complexes have been suggested by infrared spectral data along with a new band at 540 cm−1, which may be ascribed owing to νasy(Fe3O) vibrations. Mössbauer studies revealed two resolved quadrupole doublets at 120–315 K confirming the presence of Fe(II) and Fe(III) moities in the iron complexes. Thermoanalytical data indicated the iron complexes were thermally stable up to 135 °C, whereas the cobalt complexes were stable up to 160 °C, above which temperature decomposition started and continued to ∼400 °C at which temperature the formation of metal sulfide and/or oxide was noticed. An attempt has been made to establish the structures based on these studies.","PeriodicalId":22160,"journal":{"name":"Synthesis and Reactivity in Inorganic and Metal-organic Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis and Reactivity in Inorganic and Metal-organic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1081/SIM-200030186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Abstract A series of iron(II,III,III) and cobalt(II) complexes of thiocarboxylic acids of the general formulas [FeIIFe2 IIIO(SOCR)6(L)3] and [Co(SOCR)2(L)2] (R = C2H5 or C(CH3)3 and L = EtOH or py) have been synthesized and characterized by elemental and thermogravimetric analyses, spectral (infrared, electronic, and Mössbauer) studies, molar conductance, magnetic susceptibility, and molecular weight determinations. The electronic spectral data suggested an octahedral environment around the metal ion in both the iron as well as the cobalt complexes. A band around 13,800 cm−1 in the electronic spectra of the iron complexes indicated intervalence‐transfer between Fe(II) and Fe(III) moieties. A bridging mode of coordination could be assigned for the thiocarboxylate anions in the iron complexes and a chelating mode of coordination for the cobalt complexes have been suggested by infrared spectral data along with a new band at 540 cm−1, which may be ascribed owing to νasy(Fe3O) vibrations. Mössbauer studies revealed two resolved quadrupole doublets at 120–315 K confirming the presence of Fe(II) and Fe(III) moities in the iron complexes. Thermoanalytical data indicated the iron complexes were thermally stable up to 135 °C, whereas the cobalt complexes were stable up to 160 °C, above which temperature decomposition started and continued to ∼400 °C at which temperature the formation of metal sulfide and/or oxide was noticed. An attempt has been made to establish the structures based on these studies.
铁(II,III,III)和钴(II)硫代羧化物的合成及理化研究
摘要合成了一系列通式[FeIIFe2 IIIO(SOCR)6(L)3]和[Co(SOCR)2(L)2] (R = C2H5或C(CH3)3, L = EtOH或py)的硫代羧酸铁(II,III,III)和钴(II)配合物,并通过元素和热重分析、光谱(红外、电子和Mössbauer)研究、摩尔电导、磁化率和分子量测定进行了表征。电子光谱数据表明,铁和钴配合物中的金属离子周围都有一个八面体环境。铁配合物在13800 cm−1左右的电子谱带显示了Fe(II)和Fe(III)之间的价间转移。红外光谱数据表明,铁配合物中的硫代羧酸阴离子具有桥接配位模式,钴配合物具有螯合配位模式,在540 cm−1处有一个新的波段,这可能是由于容易(fe30)振动造成的。Mössbauer研究发现,在120-315 K的温度下,有两个分离的四极双峰,证实了铁配合物中存在铁(II)和铁(III)的运动。热分析数据表明,铁配合物在135°C时热稳定,而钴配合物在160°C时稳定,高于此温度分解开始并持续到~ 400°C,在此温度下形成金属硫化物和/或氧化物。我们试图在这些研究的基础上建立这些结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信