Synthesis of New Energetic Materials and Ionic Liquids Derived from Metronidazole

M. A. Romero
{"title":"Synthesis of New Energetic Materials and Ionic Liquids Derived from Metronidazole","authors":"M. A. Romero","doi":"10.1155/2016/4705809","DOIUrl":null,"url":null,"abstract":"Simple and efficient synthetic procedures were established for the preparation of new energetic covalent compounds, salts, and protonated ionic liquids based on the readily available antimicrobial agent metronidazole. Some of these materials exhibit the desirable properties of energetic materials and energetic ionic liquids, such as low vapor pressure, low melting point, good chemical and thermal stability, and high energetic content. For each of the relevant compounds prepared, thermal stability was determined by differential scanning calorimetry. Some of these compounds may be considered promising precursors of pharmaceuticals such as antimicrobial, antiparasitic, antifungal, antineoplastic agents, or enzyme inhibitors.","PeriodicalId":19688,"journal":{"name":"Organic Chemistry International","volume":"78 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/4705809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Simple and efficient synthetic procedures were established for the preparation of new energetic covalent compounds, salts, and protonated ionic liquids based on the readily available antimicrobial agent metronidazole. Some of these materials exhibit the desirable properties of energetic materials and energetic ionic liquids, such as low vapor pressure, low melting point, good chemical and thermal stability, and high energetic content. For each of the relevant compounds prepared, thermal stability was determined by differential scanning calorimetry. Some of these compounds may be considered promising precursors of pharmaceuticals such as antimicrobial, antiparasitic, antifungal, antineoplastic agents, or enzyme inhibitors.
甲硝唑衍生新型含能材料及离子液体的合成
建立了以现有抗菌剂甲硝唑为基础,制备新型高能共价化合物、盐和质子化离子液体的简单高效的合成方法。其中一些材料表现出含能材料和含能离子液体的理想特性,如蒸气压低、熔点低、化学和热稳定性好、含能高。用差示扫描量热法测定了所制备化合物的热稳定性。其中一些化合物可能被认为是有前途的药物前体,如抗菌剂、抗寄生虫剂、抗真菌剂、抗肿瘤剂或酶抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信