Zipper Fractal Functions with Variable Scalings

.. Vi̇jay, A. Chand
{"title":"Zipper Fractal Functions with Variable Scalings","authors":".. Vi̇jay, A. Chand","doi":"10.31197/atnaa.1149689","DOIUrl":null,"url":null,"abstract":"Zipper fractal interpolation function (ZFIF) is a generalization of fractal interpolation function through an improved version of iterated function system by using a binary parameter called a signature. The signature allows the horizontal scalings to be negative. ZFIFs have a complex geometric structure, and they can be non-differentiable on a dense subset of an interval I. In this paper, we construct k-times continuously differentiable ZFIFs with variable scaling functions on I. Some properties like the positivity, monotonicity, and convexity of a zipper fractal function and the one-sided approximation for a continuous function by a zipper fractal function are studied. The existence of Schauder basis of zipper fractal functions for the space of k-times continuously differentiable functions and the space of p-integrable functions for p ∈ [1,∞) are studied. We introduce the zipper versions of full Müntz theorem for continuous function and p-integrable functions on I for p ∈ [1,∞).","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"392 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.1149689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Zipper fractal interpolation function (ZFIF) is a generalization of fractal interpolation function through an improved version of iterated function system by using a binary parameter called a signature. The signature allows the horizontal scalings to be negative. ZFIFs have a complex geometric structure, and they can be non-differentiable on a dense subset of an interval I. In this paper, we construct k-times continuously differentiable ZFIFs with variable scaling functions on I. Some properties like the positivity, monotonicity, and convexity of a zipper fractal function and the one-sided approximation for a continuous function by a zipper fractal function are studied. The existence of Schauder basis of zipper fractal functions for the space of k-times continuously differentiable functions and the space of p-integrable functions for p ∈ [1,∞) are studied. We introduce the zipper versions of full Müntz theorem for continuous function and p-integrable functions on I for p ∈ [1,∞).
拉链分形函数与可变缩放
zippers分形插值函数(ZFIF)是分形插值函数的一种泛化,通过使用一个称为签名的二进制参数对迭代函数系统进行改进。签名允许水平缩放为负。ZFIFs具有复杂的几何结构,在区间i的密集子集上可以是不可微的。本文在i上构造了具有变尺度函数的k次连续可微ZFIFs。研究了拉链分形函数的正性、单调性、凸性以及拉链分形函数对连续函数的单面逼近等性质。研究了k次连续可微函数空间和p∈[1,∞]的p可积函数空间的拉链分形函数Schauder基的存在性。对于p∈[1,∞],我们引入了I上连续函数和p可积函数的完整m ntz定理的拉链版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信