Inverter Fault Diagnosis Based on Optimized BP Neural Network

Xing Liu, Mingyao Ma, Weisheng Guo, Xuesong Meng, Pengbo Xiong
{"title":"Inverter Fault Diagnosis Based on Optimized BP Neural Network","authors":"Xing Liu, Mingyao Ma, Weisheng Guo, Xuesong Meng, Pengbo Xiong","doi":"10.1109/ICIEA51954.2021.9516072","DOIUrl":null,"url":null,"abstract":"The inverter fault diagnosis based on BP neural network can fall into local minimum and overfitting. To solve these problems, we propose a fault diagnosis method based on BP neural network optimized by cross entropy and L2 regularization. In this proposed method, the quadratic cost function is replaced by the cross entropy cost function, which avoids the influence of the partial derivative of the activation function. L2 regularization is used to adjust network toward the small weight distribution. This method reduces the possibility of falling into local minimum and overfitting. The experimental results show that the optimized neural network can improve the accuracy of inverter fault diagnosis.","PeriodicalId":6809,"journal":{"name":"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)","volume":"21 1","pages":"803-808"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA51954.2021.9516072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The inverter fault diagnosis based on BP neural network can fall into local minimum and overfitting. To solve these problems, we propose a fault diagnosis method based on BP neural network optimized by cross entropy and L2 regularization. In this proposed method, the quadratic cost function is replaced by the cross entropy cost function, which avoids the influence of the partial derivative of the activation function. L2 regularization is used to adjust network toward the small weight distribution. This method reduces the possibility of falling into local minimum and overfitting. The experimental results show that the optimized neural network can improve the accuracy of inverter fault diagnosis.
基于优化BP神经网络的逆变器故障诊断
基于BP神经网络的逆变器故障诊断容易陷入局部最小值和过拟合。为了解决这些问题,提出了一种基于交叉熵和L2正则化优化的BP神经网络的故障诊断方法。该方法将二次代价函数替换为交叉熵代价函数,避免了激活函数偏导数的影响。采用L2正则化将网络向小权重分布方向调整。该方法减少了陷入局部最小值和过拟合的可能性。实验结果表明,优化后的神经网络可以提高逆变器故障诊断的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信