{"title":"Fock–Goncharov dual cluster varieties and Gross–Siebert mirrors","authors":"Hülya Argüz, Pierrick Bousseau","doi":"10.1515/crelle-2023-0043","DOIUrl":null,"url":null,"abstract":"Abstract Cluster varieties come in pairs: for any 𝒳 {\\mathcal{X}} cluster variety there is an associated Fock–Goncharov dual 𝒜 {\\mathcal{A}} cluster variety. On the other hand, in the context of mirror symmetry, associated with any log Calabi–Yau variety is its mirror dual, which can be constructed using the enumerative geometry of rational curves in the framework of the Gross–Siebert program. In this paper we bridge the theory of cluster varieties with the algebro-geometric framework of Gross–Siebert mirror symmetry. Particularly, we show that the mirror to the 𝒳 {\\mathcal{X}} cluster variety is a degeneration of the Fock–Goncharov dual 𝒜 {\\mathcal{A}} cluster variety and vice versa. To do this, we investigate how the cluster scattering diagram of Gross, Hacking, Keel and Kontsevich compares with the canonical scattering diagram defined by Gross and Siebert to construct mirror duals in arbitrary dimensions. Consequently, we derive an enumerative interpretation of the cluster scattering diagram. Along the way, we prove the Frobenius structure conjecture for a class of log Calabi–Yau varieties obtained as blow-ups of toric varieties.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0043","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract Cluster varieties come in pairs: for any 𝒳 {\mathcal{X}} cluster variety there is an associated Fock–Goncharov dual 𝒜 {\mathcal{A}} cluster variety. On the other hand, in the context of mirror symmetry, associated with any log Calabi–Yau variety is its mirror dual, which can be constructed using the enumerative geometry of rational curves in the framework of the Gross–Siebert program. In this paper we bridge the theory of cluster varieties with the algebro-geometric framework of Gross–Siebert mirror symmetry. Particularly, we show that the mirror to the 𝒳 {\mathcal{X}} cluster variety is a degeneration of the Fock–Goncharov dual 𝒜 {\mathcal{A}} cluster variety and vice versa. To do this, we investigate how the cluster scattering diagram of Gross, Hacking, Keel and Kontsevich compares with the canonical scattering diagram defined by Gross and Siebert to construct mirror duals in arbitrary dimensions. Consequently, we derive an enumerative interpretation of the cluster scattering diagram. Along the way, we prove the Frobenius structure conjecture for a class of log Calabi–Yau varieties obtained as blow-ups of toric varieties.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.