Pure-Attention-Based Multifunction Memristive Neuromorphic Circuit and System

He Xiao, Haohang Sun, Tianhao Zhao, Yue Zhou, Xiaofang Hu
{"title":"Pure-Attention-Based Multifunction Memristive Neuromorphic Circuit and System","authors":"He Xiao, Haohang Sun, Tianhao Zhao, Yue Zhou, Xiaofang Hu","doi":"10.1142/s0218127423300239","DOIUrl":null,"url":null,"abstract":"The use of memristive neuromorphic circuit and system is a promising solution for next-generation Artificial Intelligence (AI) computing, as it offers possibilities that go beyond conventional GPU-based artificial neural network computing platforms. However, most of the existing memristive neuromorphic circuits and systems are designed for the specific networks, which is lack of universality and flexibility. Therefore, this paper proposes a universal memristive circuit and system framework for pure-attention-based transformer networks to implement multifunction applications on edge devices. Furthermore, the verification of image recognition and speech recognition was achieved by extending the size of the memristor crossbar array macros and reconfiguring the memristor weights without changing the memristive transformer circuit and framework. This paper not only provides a universal edge implementation framework for multifunction applications of the transformer, but also offers a low-power and promising solution for the application of pure-attention-based transformers on edge devices.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423300239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of memristive neuromorphic circuit and system is a promising solution for next-generation Artificial Intelligence (AI) computing, as it offers possibilities that go beyond conventional GPU-based artificial neural network computing platforms. However, most of the existing memristive neuromorphic circuits and systems are designed for the specific networks, which is lack of universality and flexibility. Therefore, this paper proposes a universal memristive circuit and system framework for pure-attention-based transformer networks to implement multifunction applications on edge devices. Furthermore, the verification of image recognition and speech recognition was achieved by extending the size of the memristor crossbar array macros and reconfiguring the memristor weights without changing the memristive transformer circuit and framework. This paper not only provides a universal edge implementation framework for multifunction applications of the transformer, but also offers a low-power and promising solution for the application of pure-attention-based transformers on edge devices.
基于纯注意的多功能记忆神经形态回路与系统
记忆神经形态电路和系统的使用,超越了传统的基于gpu的人工神经网络计算平台,是下一代人工智能(AI)计算的一个有前景的解决方案。然而,现有的记忆神经形态电路和系统大多是针对特定网络设计的,缺乏通用性和灵活性。因此,本文提出了一种通用记忆电路和系统框架,用于纯注意力变压器网络,以实现边缘设备上的多功能应用。此外,在不改变忆阻变压器电路和结构的前提下,通过扩大忆阻器横条阵列宏的尺寸和重新配置忆阻器权值,实现了图像识别和语音识别的验证。本文不仅为变压器的多功能应用提供了一个通用的边缘实现框架,而且为纯注意力变压器在边缘设备上的应用提供了一个低功耗、有前景的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信