A New Method for Solving Sequential Fractional Wave Equations

IF 0.7 Q2 MATHEMATICS
Sondos M. Syam, Z. Siri, R. Kasmani, Kenan Yildirim
{"title":"A New Method for Solving Sequential Fractional Wave Equations","authors":"Sondos M. Syam, Z. Siri, R. Kasmani, Kenan Yildirim","doi":"10.1155/2023/5888010","DOIUrl":null,"url":null,"abstract":"In this article, we focus on two classes of fractional wave equations in the context of the sequential Caputo derivative. For the first class, we derive the closed-form solution in terms of generalized Mittag–Leffler functions. Subsequently, we consider a more general class of nonhomogeneous fractional wave equations. Due to the complexity of finding exact solutions for these problems, we employ a numerical technique based on the operational matrix method to approximate the solution. We provide several theoretical and numerical examples to validate the effectiveness of this numerical approach. The results demonstrate the accuracy and efficiency of the proposed method.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5888010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, we focus on two classes of fractional wave equations in the context of the sequential Caputo derivative. For the first class, we derive the closed-form solution in terms of generalized Mittag–Leffler functions. Subsequently, we consider a more general class of nonhomogeneous fractional wave equations. Due to the complexity of finding exact solutions for these problems, we employ a numerical technique based on the operational matrix method to approximate the solution. We provide several theoretical and numerical examples to validate the effectiveness of this numerical approach. The results demonstrate the accuracy and efficiency of the proposed method.
求解顺序分数阶波动方程的一种新方法
在这篇文章中,我们集中讨论了顺序Caputo导数的两类分数阶波动方程。对于第一类,我们导出了广义Mittag-Leffler函数的闭型解。随后,我们考虑了一类更一般的非齐次分数阶波动方程。由于寻找这些问题的精确解的复杂性,我们采用基于运算矩阵法的数值技术来近似解。给出了几个理论和数值实例来验证该数值方法的有效性。结果证明了该方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信