MODELING OF A VENTILATED CAVITY BEHIND A STREAMLINED BODY

IF 0.1
G. Voropaiev, V. I. Korobov, N. Dimitrieva
{"title":"MODELING OF A VENTILATED CAVITY BEHIND A STREAMLINED BODY","authors":"G. Voropaiev, V. I. Korobov, N. Dimitrieva","doi":"10.17721/2706-9699.2021.1.09","DOIUrl":null,"url":null,"abstract":"The results of physical and numerical modeling of a ventilated air cavity behind a streamlined body are presented. The results of laboratory experiments to determine the amount of gas flowing from the ventilated cavity are presented. It is formed behind the cavitator depending on a number of geometric and dynamic parameters. Numerical simulation of non-stationary 3D two-phase flow was performed on the basis of open source software OpenFOAM. The influence of gas blowing parameters on the formation of an air cavity, size, shape and stability has been investigated. Good qualitative agreement with experimental data was obtained. It is shown that the thickness of the ventilated cavity is determined by the diameter of the cavitator regardless of the diameter of the blow hole, and the increase in velocity or gas flow rate has a positive effect on the length and stability of the formed cavity.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"124 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2021.1.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The results of physical and numerical modeling of a ventilated air cavity behind a streamlined body are presented. The results of laboratory experiments to determine the amount of gas flowing from the ventilated cavity are presented. It is formed behind the cavitator depending on a number of geometric and dynamic parameters. Numerical simulation of non-stationary 3D two-phase flow was performed on the basis of open source software OpenFOAM. The influence of gas blowing parameters on the formation of an air cavity, size, shape and stability has been investigated. Good qualitative agreement with experimental data was obtained. It is shown that the thickness of the ventilated cavity is determined by the diameter of the cavitator regardless of the diameter of the blow hole, and the increase in velocity or gas flow rate has a positive effect on the length and stability of the formed cavity.
流线型车身后通风腔的建模
给出了流线型体后通风空腔的物理和数值模拟结果。给出了室内测定通风腔内气体流量的实验结果。它是在空化器后面形成的,取决于一些几何和动态参数。基于开源软件OpenFOAM对非平稳三维两相流进行了数值模拟。研究了吹气参数对空腔形成、尺寸、形状和稳定性的影响。定性分析结果与实验数据吻合良好。结果表明,与吹孔直径无关,通风空腔的厚度由空化器的直径决定,速度或气体流量的增加对形成空腔的长度和稳定性有积极的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信