Development of intense gamma-ray source monitoring system in water for radiation safety

H. Miyamaru, T. Kojima, Kiwamu Omura, R. Taniguchi
{"title":"Development of intense gamma-ray source monitoring system in water for radiation safety","authors":"H. Miyamaru, T. Kojima, Kiwamu Omura, R. Taniguchi","doi":"10.15669/PNST.6.126","DOIUrl":null,"url":null,"abstract":"A gamma-ray dose measurement system with a small-sized cesium iodide scintillator and a long-optical-fiber combination is developed to monitor an intense cobalt-60 gamma-ray radiation source in a deep-water pool, for radiation safety. The compact sensor consists of cesium iodide doped with thallium scintillator and a light focusing lens component. The luminescence of the scintillator, as the gamma-ray response, is collected using the lens and introduced into the 10 m-long optical fiber. Finally, the light output from the sensor is input to a photomultiplier and converted to an output voltage corresponding to the luminescence intensity. A 940 TBq cobalt-60 gamma-ray source is placed at the pool bottom and used as a target for the monitoring experiment. The dose rate to water is measured with two sensors located at different depth positions. By moving the sensors horizontally, the dose rates at several positions within the pool are measured and compared. The distance to the source can be estimated from the dose rate measured at the sensor position. Observations of the dose rate changes by moving both the sensors vertically against the pool bottom indicate that the motion of the source in an upper direction can be detected using two sensors located at different depths.","PeriodicalId":20706,"journal":{"name":"Progress in Nuclear Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15669/PNST.6.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A gamma-ray dose measurement system with a small-sized cesium iodide scintillator and a long-optical-fiber combination is developed to monitor an intense cobalt-60 gamma-ray radiation source in a deep-water pool, for radiation safety. The compact sensor consists of cesium iodide doped with thallium scintillator and a light focusing lens component. The luminescence of the scintillator, as the gamma-ray response, is collected using the lens and introduced into the 10 m-long optical fiber. Finally, the light output from the sensor is input to a photomultiplier and converted to an output voltage corresponding to the luminescence intensity. A 940 TBq cobalt-60 gamma-ray source is placed at the pool bottom and used as a target for the monitoring experiment. The dose rate to water is measured with two sensors located at different depth positions. By moving the sensors horizontally, the dose rates at several positions within the pool are measured and compared. The distance to the source can be estimated from the dose rate measured at the sensor position. Observations of the dose rate changes by moving both the sensors vertically against the pool bottom indicate that the motion of the source in an upper direction can be detected using two sensors located at different depths.
水中强射线源辐射安全监测系统的研制
研制了一种小型碘化铯闪烁体和长光纤组合的伽马射线剂量测量系统,用于监测深水池中强钴-60伽马射线辐射源的辐射安全。该紧凑型传感器由掺铊闪烁体的碘化铯和聚焦透镜组成。闪烁体的发光,作为伽马射线响应,通过透镜收集并引入10米长的光纤。最后,从传感器输出的光被输入到光电倍增管并转换成与发光强度相对应的输出电压。在池底放置940tbq钴-60 γ射线源,作为监测实验目标。对水的剂量率由位于不同深度位置的两个传感器测量。通过水平移动传感器,测量和比较池内几个位置的剂量率。从传感器位置测量的剂量率可以估计到源的距离。将两个传感器沿池底垂直移动所观察到的剂量率变化表明,使用位于不同深度的两个传感器可以检测到源在上方向的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信