Transesterification of Jatropha Seed Oil Naturally Extracted by Distilled Water on Highly Stabilized Structure of Zeolite NaX Impregnated with Potassium Buffer Solution
Johannex Fefeh Rushman, P. Maneechot, P. Thanarak, S. Somkun, Saowanee Manadee, Surachai Rattanasuk, A. Phuruangrat, Preecha Sriprapakhan, B. Prasit, S. Artkla
{"title":"Transesterification of Jatropha Seed Oil Naturally Extracted by Distilled Water on Highly Stabilized Structure of Zeolite NaX Impregnated with Potassium Buffer Solution","authors":"Johannex Fefeh Rushman, P. Maneechot, P. Thanarak, S. Somkun, Saowanee Manadee, Surachai Rattanasuk, A. Phuruangrat, Preecha Sriprapakhan, B. Prasit, S. Artkla","doi":"10.23919/ICUE-GESD.2018.8635719","DOIUrl":null,"url":null,"abstract":"This research aimed at establishing species of active potassium onto 3D-framework of Zeolite NaX that was prepared with a molar ratio of 1Al2O3:1.65K2O:2.2SiO2: 5.5 Na2O:122H2O by hydrothermal synthesis. The potassium acetate/acetic acid buffer solution impregnated catalysts produced the desired K loadings of xKa/NaXs (x values were 9, 10, 11 and 12 wt%). Characterization of catalysts were carried out with FTIR, N2 adsorption-desorption, XRD and CO2-TPD to analyse the respective parameters of the reagents (catalysts) and the product. The 3D-framework of NaX was not destroyed but the surface area and the volume of its micropore were found to have slightly decreased when number of loadings of K was increased. All prepared xKa/NaXs were used to conduct transesterification of Jatropha Curcas Lineaus (JCL) seed oil and methanol at the molar ratio of 1:16. 12K/NaX emerged as the best catalyst which produced 78.39 wt% yield of biodiesel and found to be the highest yield at a reaction time of 3.5 hours. The basicity increased with K loadings and facilitated a better catalytic performance for biodiesel synthesis from this source.","PeriodicalId":6584,"journal":{"name":"2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE)","volume":"21 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICUE-GESD.2018.8635719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This research aimed at establishing species of active potassium onto 3D-framework of Zeolite NaX that was prepared with a molar ratio of 1Al2O3:1.65K2O:2.2SiO2: 5.5 Na2O:122H2O by hydrothermal synthesis. The potassium acetate/acetic acid buffer solution impregnated catalysts produced the desired K loadings of xKa/NaXs (x values were 9, 10, 11 and 12 wt%). Characterization of catalysts were carried out with FTIR, N2 adsorption-desorption, XRD and CO2-TPD to analyse the respective parameters of the reagents (catalysts) and the product. The 3D-framework of NaX was not destroyed but the surface area and the volume of its micropore were found to have slightly decreased when number of loadings of K was increased. All prepared xKa/NaXs were used to conduct transesterification of Jatropha Curcas Lineaus (JCL) seed oil and methanol at the molar ratio of 1:16. 12K/NaX emerged as the best catalyst which produced 78.39 wt% yield of biodiesel and found to be the highest yield at a reaction time of 3.5 hours. The basicity increased with K loadings and facilitated a better catalytic performance for biodiesel synthesis from this source.