Hao Xie, Tielun Hu, Zhili Wang, Yanbin Yang, Xiaohui Hu, Wei Qi, Hong Liu
{"title":"A PHYSICS-BASED HIE-FDTD METHOD FOR ELECTROMAGNETIC MODELING OF MULTI-BAND FREQUENCY SELECTIVE SURFACE (INVITED)","authors":"Hao Xie, Tielun Hu, Zhili Wang, Yanbin Yang, Xiaohui Hu, Wei Qi, Hong Liu","doi":"10.2528/pier22012103","DOIUrl":null,"url":null,"abstract":"|A physics-based hybrid implicit-explicit (cid:12)nite-difference time domain (HIE-FDTD) method is developed for electromagnetic modeling of multi-passband frequency selective surfaces (FSSs). Using this self-developed HIE-FDTD simulator, several dual- and tri-passband FSSs are designed and further fabricated. The measurement results are in good agreement with the simulation ones, which prove high accuracy of the self-developed HIE-FDTD algorithm. In addition, the resonant frequencies of the designed FSSs can be effectively adjusted by changing their geometric parameters. This work provides electromagnetic guides of structure and parameter selections for designing multi-passband FSS.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pier22012103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
|A physics-based hybrid implicit-explicit (cid:12)nite-difference time domain (HIE-FDTD) method is developed for electromagnetic modeling of multi-passband frequency selective surfaces (FSSs). Using this self-developed HIE-FDTD simulator, several dual- and tri-passband FSSs are designed and further fabricated. The measurement results are in good agreement with the simulation ones, which prove high accuracy of the self-developed HIE-FDTD algorithm. In addition, the resonant frequencies of the designed FSSs can be effectively adjusted by changing their geometric parameters. This work provides electromagnetic guides of structure and parameter selections for designing multi-passband FSS.