M. Handayani, Bagus Indra Suwaji, Geolita Ihsantia Ning Asih, T. Kusumaningsih, Y. Kusumastuti, Rochmadi, I. Anshori
{"title":"In-situ synthesis of reduced graphene oxide/silver nanoparticles (rGO/AgNPs) nanocomposites for high loading capacity of acetylsalicylic acid","authors":"M. Handayani, Bagus Indra Suwaji, Geolita Ihsantia Ning Asih, T. Kusumaningsih, Y. Kusumastuti, Rochmadi, I. Anshori","doi":"10.1080/20550324.2022.2054210","DOIUrl":null,"url":null,"abstract":"Abstract Graphene has excellent properties which can be a promising material as nanocomposites for application in a drug delivery system (DDS). In this study, reduced graphene oxide/silver nanoparticles (rGO/AgNPs) nanocomposites was synthesized using a facile in-situ method for drug loading application of acetylsalicylic acid (ASA). The synthesis results were characterized by FESEM, EDX, UV-Vis, XRD, and Raman spectrophotometers analyses. The results showed that rGO/AgNPs nanocomposites was synthesized successfully. Drug loading application was performed using UV-Vis measurements. The loading results depicted that rGO/AgNPs is successfully created in high-capacity loading for ASA. Drug loading performances enhanced with the increasing loading time of ASA on rGO/AgNPs. The optimum percentage of drug loading capacity for ASA by rGO/AgNPs was ∼83% in a contact time of 30 hrs. Graphical Abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"93 1","pages":"74 - 80"},"PeriodicalIF":4.2000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanocomposites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/20550324.2022.2054210","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 8
Abstract
Abstract Graphene has excellent properties which can be a promising material as nanocomposites for application in a drug delivery system (DDS). In this study, reduced graphene oxide/silver nanoparticles (rGO/AgNPs) nanocomposites was synthesized using a facile in-situ method for drug loading application of acetylsalicylic acid (ASA). The synthesis results were characterized by FESEM, EDX, UV-Vis, XRD, and Raman spectrophotometers analyses. The results showed that rGO/AgNPs nanocomposites was synthesized successfully. Drug loading application was performed using UV-Vis measurements. The loading results depicted that rGO/AgNPs is successfully created in high-capacity loading for ASA. Drug loading performances enhanced with the increasing loading time of ASA on rGO/AgNPs. The optimum percentage of drug loading capacity for ASA by rGO/AgNPs was ∼83% in a contact time of 30 hrs. Graphical Abstract