{"title":"Stability and local bifurcations of single-mode equilibrium states of the Ginzburg-Landau variational equation","authors":"D. A. Kulikov","doi":"10.35634/vm230204","DOIUrl":null,"url":null,"abstract":"One of the versions of the generalized variational Ginzburg-Landau equation is considered, supplemented by periodic boundary conditions. For such a boundary value problem, the question of existence, stability, and local bifurcations of single-mode equilibrium states is studied. It is shown that in the case of a nearly critical threefold zero eigenvalue, in the problem of stability of single-mode spatially inhomogeneous equilibrium states, subcritical bifurcations of two-dimensional invariant tori filled with spatially inhomogeneous equilibrium states are realized.\nThe analysis of the stated problem is based on such methods of the theory of infinite-dimensional dynamical systems as the theory of invariant manifolds and the apparatus of normal forms. Asymptotic formulas are obtained for the solutions that form invariant tori.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm230204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
One of the versions of the generalized variational Ginzburg-Landau equation is considered, supplemented by periodic boundary conditions. For such a boundary value problem, the question of existence, stability, and local bifurcations of single-mode equilibrium states is studied. It is shown that in the case of a nearly critical threefold zero eigenvalue, in the problem of stability of single-mode spatially inhomogeneous equilibrium states, subcritical bifurcations of two-dimensional invariant tori filled with spatially inhomogeneous equilibrium states are realized.
The analysis of the stated problem is based on such methods of the theory of infinite-dimensional dynamical systems as the theory of invariant manifolds and the apparatus of normal forms. Asymptotic formulas are obtained for the solutions that form invariant tori.