Behavioral-based malware clustering and classification

I. Alsmadi, B. Al-Ahmad, Iyad Alazzam
{"title":"Behavioral-based malware clustering and classification","authors":"I. Alsmadi, B. Al-Ahmad, Iyad Alazzam","doi":"10.15864/ajse.1105","DOIUrl":null,"url":null,"abstract":"Detection of malwares and security attacks is a complex process that can vary in its details, analysis activities, etc. As part of the detection process, malware scanners try to categorize a malware once it is detected under one of the known malware categories (e.g. worms, spywares,\n viruses, etc.). However, many studies and researches indicate problems with scanners categorizing or identifying a particular malware under different categories. There are different reasons for such challenges where different malware scanners, and sometime the same malware scanner, will categorize\n the same malware under different categories in different times or instances. In this paper, we evaluated this problem summarizing existing approaches on malware classification.","PeriodicalId":93409,"journal":{"name":"American journal of engineering, science and technology","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of engineering, science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15864/ajse.1105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detection of malwares and security attacks is a complex process that can vary in its details, analysis activities, etc. As part of the detection process, malware scanners try to categorize a malware once it is detected under one of the known malware categories (e.g. worms, spywares, viruses, etc.). However, many studies and researches indicate problems with scanners categorizing or identifying a particular malware under different categories. There are different reasons for such challenges where different malware scanners, and sometime the same malware scanner, will categorize the same malware under different categories in different times or instances. In this paper, we evaluated this problem summarizing existing approaches on malware classification.
基于行为的恶意软件聚类和分类
恶意软件和安全攻击的检测是一个复杂的过程,其细节、分析活动等各不相同。作为检测过程的一部分,恶意软件扫描器一旦在已知的恶意软件类别(例如蠕虫,间谍软件,病毒等)中检测到恶意软件,就会尝试对其进行分类。然而,许多研究和研究表明,扫描器在不同类别下分类或识别特定恶意软件存在问题。不同的恶意软件扫描器(有时是相同的恶意软件扫描器)会在不同的时间或实例中将相同的恶意软件分类为不同的类别,这类挑战有不同的原因。本文总结了现有的恶意软件分类方法,对这一问题进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信