Orderable groups, elementary theory, and the Kaplansky conjecture

IF 0.1 Q4 MATHEMATICS
B. Fine, A. Gaglione, G. Rosenberger, D. Spellman
{"title":"Orderable groups, elementary theory, and the Kaplansky conjecture","authors":"B. Fine, A. Gaglione, G. Rosenberger, D. Spellman","doi":"10.1515/gcc-2018-0005","DOIUrl":null,"url":null,"abstract":"Abstract We show that each of the classes of left-orderable groups and orderable groups is a quasivariety with undecidable theory. In the case of orderable groups, we find an explicit set of universal axioms. We then consider the relationship with the Kaplansky group rings conjecture and show that 𝒦 {{\\mathcal{K}}} , the class of groups which satisfy the conjecture, is the model class of a set of universal sentences in the language of group theory. We also give a characterization of when two groups in 𝒦 {{\\mathcal{K}}} or more generally two torsion-free groups are universally equivalent.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"31 1","pages":"43 - 52"},"PeriodicalIF":0.1000,"publicationDate":"2018-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2018-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We show that each of the classes of left-orderable groups and orderable groups is a quasivariety with undecidable theory. In the case of orderable groups, we find an explicit set of universal axioms. We then consider the relationship with the Kaplansky group rings conjecture and show that 𝒦 {{\mathcal{K}}} , the class of groups which satisfy the conjecture, is the model class of a set of universal sentences in the language of group theory. We also give a characterization of when two groups in 𝒦 {{\mathcal{K}}} or more generally two torsion-free groups are universally equivalent.
可序群,基本理论,和卡普兰斯基猜想
摘要证明了左可序群和可序群的每一类都是具有不可定理论的拟变。在可序群的情况下,我们找到了一组显式的全称公理。然后,我们考虑了与卡普兰斯基群环猜想的关系,并证明了满足卡普兰斯基群环猜想的群类𝒦{{\mathcal{K}}}是群论语言中一组全称句的模型类。我们也给出了𝒦{{\mathcal{K}}}中两个群或更一般地两个无扭转群是普遍等价的一个刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信