Toward formally verifying congestion control behavior

V. Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad Alizadeh, H. Balakrishnan
{"title":"Toward formally verifying congestion control behavior","authors":"V. Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad Alizadeh, H. Balakrishnan","doi":"10.1145/3452296.3472912","DOIUrl":null,"url":null,"abstract":"The diversity of paths on the Internet makes it difficult for designers and operators to confidently deploy new congestion control algorithms (CCAs) without extensive real-world experiments, but such capabilities are not available to most of the networking community. And even when they are available, understanding why a CCA underperforms by trawling through massive amounts of statistical data from network connections is challenging. The history of congestion control is replete with many examples of surprising and unanticipated behaviors unseen in simulation but observed on real-world paths. In this paper, we propose initial steps toward modeling and improving our confidence in a CCA's behavior. We have developed CCAC, a tool that uses formal verification to establish certain properties of CCAs. It is able to prove hypotheses about CCAs or generate counterexamples for invalid hypotheses. With CCAC, a designer can not only gain greater confidence prior to deployment to avoid unpleasant surprises, but can also use the counterexamples to iteratively improvetheir algorithm. We have modeled additive-increase/multiplicative-decrease (AIMD), Copa, and BBR with CCAC, and describe some surprising results from the exercise.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452296.3472912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The diversity of paths on the Internet makes it difficult for designers and operators to confidently deploy new congestion control algorithms (CCAs) without extensive real-world experiments, but such capabilities are not available to most of the networking community. And even when they are available, understanding why a CCA underperforms by trawling through massive amounts of statistical data from network connections is challenging. The history of congestion control is replete with many examples of surprising and unanticipated behaviors unseen in simulation but observed on real-world paths. In this paper, we propose initial steps toward modeling and improving our confidence in a CCA's behavior. We have developed CCAC, a tool that uses formal verification to establish certain properties of CCAs. It is able to prove hypotheses about CCAs or generate counterexamples for invalid hypotheses. With CCAC, a designer can not only gain greater confidence prior to deployment to avoid unpleasant surprises, but can also use the counterexamples to iteratively improvetheir algorithm. We have modeled additive-increase/multiplicative-decrease (AIMD), Copa, and BBR with CCAC, and describe some surprising results from the exercise.
正式验证拥塞控制行为
互联网上路径的多样性使得设计人员和运营商很难在没有广泛的真实世界实验的情况下自信地部署新的拥塞控制算法(cca),但大多数网络社区都无法获得此类功能。即使它们是可用的,通过从网络连接中收集大量统计数据来理解为什么CCA表现不佳也是具有挑战性的。拥塞控制的历史充满了许多令人惊讶和意想不到的行为的例子,这些行为在模拟中看不到,但在现实世界的路径上可以观察到。在本文中,我们提出了初步的步骤来建模和提高我们对CCA行为的信心。我们已经开发了CCAC,一个使用正式验证来建立cca的某些属性的工具。它能够证明关于cca的假设或为无效假设生成反例。使用CCAC,设计人员不仅可以在部署之前获得更大的信心,以避免令人不快的意外,而且还可以使用反例来迭代地改进他们的算法。我们用CCAC对加性增加/乘性减少(AIMD)、Copa和BBR进行了建模,并描述了一些令人惊讶的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信