{"title":"Refinement of numerical radius inequalities of complex Hilbert space operators","authors":"Pintu Bhunia, Kallol Paul","doi":"10.1007/s44146-023-00070-1","DOIUrl":null,"url":null,"abstract":"<div><p>We develop upper and lower bounds for the numerical radius of <span>\\(2\\times 2\\)</span> off-diagonal operator matrices, which generalize and improve on some existing ones. We also show that if <i>A</i> is a bounded linear operator on a complex Hilbert space, then for all <span>\\(r\\ge 1\\)</span>, </p><div><div><span>$$\\begin{aligned} w^{2r}(A) \\le \\frac{1}{4} \\big \\Vert |A|^{2r}+|A^*|^{2r} \\big \\Vert + \\frac{1}{2} \\min \\left\\{ \\big \\Vert \\Re \\big (|A|^r\\, |A^*|^r \\big ) \\big \\Vert , w^r(A^2) \\right\\} \\end{aligned}$$</span></div></div><p>where <i>w</i>(<i>A</i>), <span>\\(\\Vert A\\Vert \\)</span> and <span>\\(\\Re (A)\\)</span>, respectively, stand for the numerical radius, the operator norm and the real part of <i>A</i>. This (for <span>\\(r=1\\)</span>) improves on some existing well-known numerical radius inequalities.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 3-4","pages":"427 - 436"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00070-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
We develop upper and lower bounds for the numerical radius of \(2\times 2\) off-diagonal operator matrices, which generalize and improve on some existing ones. We also show that if A is a bounded linear operator on a complex Hilbert space, then for all \(r\ge 1\),
where w(A), \(\Vert A\Vert \) and \(\Re (A)\), respectively, stand for the numerical radius, the operator norm and the real part of A. This (for \(r=1\)) improves on some existing well-known numerical radius inequalities.