Refinement of numerical radius inequalities of complex Hilbert space operators

IF 0.5 Q3 MATHEMATICS
Pintu Bhunia, Kallol Paul
{"title":"Refinement of numerical radius inequalities of complex Hilbert space operators","authors":"Pintu Bhunia,&nbsp;Kallol Paul","doi":"10.1007/s44146-023-00070-1","DOIUrl":null,"url":null,"abstract":"<div><p>We develop upper and lower bounds for the numerical radius of <span>\\(2\\times 2\\)</span> off-diagonal operator matrices, which generalize and improve on some existing ones. We also show that if <i>A</i> is a bounded linear operator on a complex Hilbert space, then for all <span>\\(r\\ge 1\\)</span>, </p><div><div><span>$$\\begin{aligned} w^{2r}(A) \\le \\frac{1}{4} \\big \\Vert |A|^{2r}+|A^*|^{2r} \\big \\Vert + \\frac{1}{2} \\min \\left\\{ \\big \\Vert \\Re \\big (|A|^r\\, |A^*|^r \\big ) \\big \\Vert , w^r(A^2) \\right\\} \\end{aligned}$$</span></div></div><p>where <i>w</i>(<i>A</i>), <span>\\(\\Vert A\\Vert \\)</span> and <span>\\(\\Re (A)\\)</span>, respectively, stand for the numerical radius, the operator norm and the real part of <i>A</i>. This (for <span>\\(r=1\\)</span>) improves on some existing well-known numerical radius inequalities.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 3-4","pages":"427 - 436"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00070-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We develop upper and lower bounds for the numerical radius of \(2\times 2\) off-diagonal operator matrices, which generalize and improve on some existing ones. We also show that if A is a bounded linear operator on a complex Hilbert space, then for all \(r\ge 1\),

$$\begin{aligned} w^{2r}(A) \le \frac{1}{4} \big \Vert |A|^{2r}+|A^*|^{2r} \big \Vert + \frac{1}{2} \min \left\{ \big \Vert \Re \big (|A|^r\, |A^*|^r \big ) \big \Vert , w^r(A^2) \right\} \end{aligned}$$

where w(A), \(\Vert A\Vert \) and \(\Re (A)\), respectively, stand for the numerical radius, the operator norm and the real part of A. This (for \(r=1\)) improves on some existing well-known numerical radius inequalities.

复希尔伯特空间算子数值半径不等式的改进
给出了\(2\times 2\)非对角算子矩阵数值半径的上界和下界,推广和改进了已有的一些数值半径的上界和下界。我们还证明了如果A是复Hilbert空间上的有界线性算子,那么对于所有\(r\ge 1\), $$\begin{aligned} w^{2r}(A) \le \frac{1}{4} \big \Vert |A|^{2r}+|A^*|^{2r} \big \Vert + \frac{1}{2} \min \left\{ \big \Vert \Re \big (|A|^r\, |A^*|^r \big ) \big \Vert , w^r(A^2) \right\} \end{aligned}$$,其中w(A), \(\Vert A\Vert \)和\(\Re (A)\)分别表示数值半径,算子范数和A的实部。这(对于\(r=1\))改进了一些已知的数值半径不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信