{"title":"Exergy analysis and experimental study of heat pump systems","authors":"E. Bilgen, H. Takahashi","doi":"10.1016/S1164-0235(02)00083-3","DOIUrl":null,"url":null,"abstract":"<div><p>Exergy analysis of heat pump—air conditioner systems has been carried out. The irreversibilities due to heat transfer and friction have been considered. The coefficient of performance based on the first law of thermodynamics as a function of various parameters, their optimum values, and the efficiency and coefficient of performance based on exergy analysis have been derived. Based on the exergy analysis, a simulation program has been developed to simulate and evaluate experimental systems. The simulation of a domestic heat pump—air conditioner of 959 W nominal power (Matsushita room air conditioner model CS-XG28M) is then carried out using experimental data. It is found that COP based on the first law varies from 7.40 to 3.85 and the exergy efficiency from 0.37 to 0.25 both a decreasing function of heating or cooling load. The exergy destructions in various components are determined for further study and improvement of its performance.</p></div>","PeriodicalId":100518,"journal":{"name":"Exergy, An International Journal","volume":"2 4","pages":"Pages 259-265"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1164-0235(02)00083-3","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exergy, An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1164023502000833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68
Abstract
Exergy analysis of heat pump—air conditioner systems has been carried out. The irreversibilities due to heat transfer and friction have been considered. The coefficient of performance based on the first law of thermodynamics as a function of various parameters, their optimum values, and the efficiency and coefficient of performance based on exergy analysis have been derived. Based on the exergy analysis, a simulation program has been developed to simulate and evaluate experimental systems. The simulation of a domestic heat pump—air conditioner of 959 W nominal power (Matsushita room air conditioner model CS-XG28M) is then carried out using experimental data. It is found that COP based on the first law varies from 7.40 to 3.85 and the exergy efficiency from 0.37 to 0.25 both a decreasing function of heating or cooling load. The exergy destructions in various components are determined for further study and improvement of its performance.