{"title":"Urban Determinants of COVID-19 Spread: a Comparative Study across Three Cities in New York State.","authors":"Agnieszka Truszkowska, Maya Fayed, Sihan Wei, Lorenzo Zino, Sachit Butail, Emanuele Caroppo, Zhong-Ping Jiang, Alessandro Rizzo, Maurizio Porfiri","doi":"10.1007/s11524-022-00623-9","DOIUrl":null,"url":null,"abstract":"<p><p>The ongoing pandemic is laying bare dramatic differences in the spread of COVID-19 across seemingly similar urban environments. Identifying the urban determinants that underlie these differences is an open research question, which can contribute to more epidemiologically resilient cities, optimized testing and detection strategies, and effective immunization efforts. Here, we perform a computational analysis of COVID-19 spread in three cities of similar size in New York State (Colonie, New Rochelle, and Utica) aiming to isolate urban determinants of infections and deaths. We develop detailed digital representations of the cities and simulate COVID-19 spread using a complex agent-based model, taking into account differences in spatial layout, mobility, demographics, and occupational structure of the population. By critically comparing pandemic outcomes across the three cities under equivalent initial conditions, we provide compelling evidence in favor of the central role of hospitals. Specifically, with highly efficacious testing and detection, the number and capacity of hospitals, as well as the extent of vaccination of hospital employees are key determinants of COVID-19 spread. The modulating role of these determinants is reduced at lower efficacy of testing and detection, so that the pandemic outcome becomes equivalent across the three cities.</p>","PeriodicalId":23233,"journal":{"name":"Transactions of the Indian Ceramic Society","volume":"34 1","pages":"909-921"},"PeriodicalIF":1.5000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170119/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Indian Ceramic Society","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11524-022-00623-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The ongoing pandemic is laying bare dramatic differences in the spread of COVID-19 across seemingly similar urban environments. Identifying the urban determinants that underlie these differences is an open research question, which can contribute to more epidemiologically resilient cities, optimized testing and detection strategies, and effective immunization efforts. Here, we perform a computational analysis of COVID-19 spread in three cities of similar size in New York State (Colonie, New Rochelle, and Utica) aiming to isolate urban determinants of infections and deaths. We develop detailed digital representations of the cities and simulate COVID-19 spread using a complex agent-based model, taking into account differences in spatial layout, mobility, demographics, and occupational structure of the population. By critically comparing pandemic outcomes across the three cities under equivalent initial conditions, we provide compelling evidence in favor of the central role of hospitals. Specifically, with highly efficacious testing and detection, the number and capacity of hospitals, as well as the extent of vaccination of hospital employees are key determinants of COVID-19 spread. The modulating role of these determinants is reduced at lower efficacy of testing and detection, so that the pandemic outcome becomes equivalent across the three cities.
期刊介绍:
Transactions of the Indian Ceramic Society is a quarterly Journal devoted to current scientific research, technology and industry-related news on glass and ceramics. The Journal covers subjects such as the chemical, mechanical, optical, electronic and spectroscopic properties of glass and ceramics, and characterization of materials belonging to this family.
The Editor invites original research papers, topical reviews, opinions and achievements, as well as industry profiles for publication. The contributions should be accompanied by abstracts, keywords and other details, as outlined in the Instructions for Authors section. News, views and other comments on activities of specific industries and organizations, and also analyses of industrial scenarios are also welcome.