Probabilistic Elastic Part Model for Unsupervised Face Detector Adaptation

Haoxiang Li, G. Hua, Zhe L. Lin, Jonathan Brandt, Jianchao Yang
{"title":"Probabilistic Elastic Part Model for Unsupervised Face Detector Adaptation","authors":"Haoxiang Li, G. Hua, Zhe L. Lin, Jonathan Brandt, Jianchao Yang","doi":"10.1109/ICCV.2013.103","DOIUrl":null,"url":null,"abstract":"We propose an unsupervised detector adaptation algorithm to adapt any offline trained face detector to a specific collection of images, and hence achieve better accuracy. The core of our detector adaptation algorithm is a probabilistic elastic part (PEP) model, which is offline trained with a set of face examples. It produces a statistically aligned part based face representation, namely the PEP representation. To adapt a general face detector to a collection of images, we compute the PEP representations of the candidate detections from the general face detector, and then train a discriminative classifier with the top positives and negatives. Then we re-rank all the candidate detections with this classifier. This way, a face detector tailored to the statistics of the specific image collection is adapted from the original detector. We present extensive results on three datasets with two state-of-the-art face detectors. The significant improvement of detection accuracy over these state of-the-art face detectors strongly demonstrates the efficacy of the proposed face detector adaptation algorithm.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"22 1","pages":"793-800"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

Abstract

We propose an unsupervised detector adaptation algorithm to adapt any offline trained face detector to a specific collection of images, and hence achieve better accuracy. The core of our detector adaptation algorithm is a probabilistic elastic part (PEP) model, which is offline trained with a set of face examples. It produces a statistically aligned part based face representation, namely the PEP representation. To adapt a general face detector to a collection of images, we compute the PEP representations of the candidate detections from the general face detector, and then train a discriminative classifier with the top positives and negatives. Then we re-rank all the candidate detections with this classifier. This way, a face detector tailored to the statistics of the specific image collection is adapted from the original detector. We present extensive results on three datasets with two state-of-the-art face detectors. The significant improvement of detection accuracy over these state of-the-art face detectors strongly demonstrates the efficacy of the proposed face detector adaptation algorithm.
无监督人脸检测器自适应的概率弹性部分模型
我们提出了一种无监督检测器自适应算法,使任何离线训练的人脸检测器适应特定的图像集合,从而达到更好的准确性。我们的检测器自适应算法的核心是一个概率弹性部分(PEP)模型,该模型使用一组人脸样本进行离线训练。它产生一个基于统计对齐部分的人脸表示,即PEP表示。为了使通用人脸检测器适应一组图像,我们计算了通用人脸检测器中候选检测的PEP表示,然后用最上面的阳性和阴性训练一个判别分类器。然后我们用这个分类器对所有的候选检测重新排序。通过这种方式,根据特定图像收集的统计数据定制的人脸检测器是由原始检测器改编的。我们在三个数据集上展示了两个最先进的面部检测器的广泛结果。与现有的人脸检测器相比,检测精度的显著提高充分证明了所提出的人脸检测器自适应算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信