{"title":"Late Quaternary Environments of the Teton Mountains, Wyoming: A Pollen Record from Green Lake","authors":"B. Balmaki, P. Wigand","doi":"10.5539/ESR.V7N2P99","DOIUrl":null,"url":null,"abstract":"Late Quaternary forest succession in Wyoming’s Rocky Mountains, occurred in random patterns, because it reflects differences between the Glacial vegetation at lower elevations on the east vs. the west of the Rockies, as well as along the mountain crest to the south. Differential melting of mountain glaciers resulted in differences in the timing of recolonization. Significant variations in the composition of plant assemblages occurred due to delays in species’ arrival, and even in the exclusion of species. Holocene climate variability, especially ongoing global warming, added to the complex dynamics of plant assemblages with warm climate species replacing early Holocene, cooler climate species. The pollen record from Green Lake (located in a glacial cirque on the west side of the Teton Mountains in Teton County, Wyoming) addresses the local vegetation response from just before the fall of Mazama ash to the end of the middle Holocene warm period. Although the earlier portion of the pollen sequence records some of the last adjustments as some plant species were still arriving after de-glaciation, by the time Mazama ash fell it was climate variation that determined most of the dynamics observed in the Green Lake record. The results reveal a sequence of wetter and drier periods based upon the presence of diagnostic tree species. A moist late early Holocene was followed by a dry middle Holocene, which ended about 6,400 cal. B.P., and was followed between 5,000 to 2,800 cal. B.P. by a sequence of drier and moister climate episodes.","PeriodicalId":11486,"journal":{"name":"Earth Science Research","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/ESR.V7N2P99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Late Quaternary forest succession in Wyoming’s Rocky Mountains, occurred in random patterns, because it reflects differences between the Glacial vegetation at lower elevations on the east vs. the west of the Rockies, as well as along the mountain crest to the south. Differential melting of mountain glaciers resulted in differences in the timing of recolonization. Significant variations in the composition of plant assemblages occurred due to delays in species’ arrival, and even in the exclusion of species. Holocene climate variability, especially ongoing global warming, added to the complex dynamics of plant assemblages with warm climate species replacing early Holocene, cooler climate species. The pollen record from Green Lake (located in a glacial cirque on the west side of the Teton Mountains in Teton County, Wyoming) addresses the local vegetation response from just before the fall of Mazama ash to the end of the middle Holocene warm period. Although the earlier portion of the pollen sequence records some of the last adjustments as some plant species were still arriving after de-glaciation, by the time Mazama ash fell it was climate variation that determined most of the dynamics observed in the Green Lake record. The results reveal a sequence of wetter and drier periods based upon the presence of diagnostic tree species. A moist late early Holocene was followed by a dry middle Holocene, which ended about 6,400 cal. B.P., and was followed between 5,000 to 2,800 cal. B.P. by a sequence of drier and moister climate episodes.