Two-Dimensional Steady Flow Modeling of Ideal Fluid in Porous Medium Using Finite Element Method

Hairil Anwar, W. Srigutomo
{"title":"Two-Dimensional Steady Flow Modeling of Ideal Fluid in Porous Medium Using Finite Element Method","authors":"Hairil Anwar, W. Srigutomo","doi":"10.5614/itb.ijp.2015.26.1.5","DOIUrl":null,"url":null,"abstract":"\n \n \nIdeal fluid is a fluid which is uncompressed and has no viscosity. A steady stream of ideal fluid in a porous medium can be modeled using finite element method. The finite element method is a numerical method that can be used to solve boundary-value problem governed by a differential equation and a set of boundary conditions. In this modeling, the linear system of equations derived using Galerkin approach for linear triangular elements. Irregular geometry and variation in permeability distribution models are used. The solution obtained in form of fluid head and fluid flow velocity distribution in the modeling domain. \n \n \n","PeriodicalId":13535,"journal":{"name":"Indonesian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itb.ijp.2015.26.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ideal fluid is a fluid which is uncompressed and has no viscosity. A steady stream of ideal fluid in a porous medium can be modeled using finite element method. The finite element method is a numerical method that can be used to solve boundary-value problem governed by a differential equation and a set of boundary conditions. In this modeling, the linear system of equations derived using Galerkin approach for linear triangular elements. Irregular geometry and variation in permeability distribution models are used. The solution obtained in form of fluid head and fluid flow velocity distribution in the modeling domain.
多孔介质中理想流体二维定常流动有限元模拟
理想流体是一种未被压缩、没有粘度的流体。理想流体在多孔介质中的稳定流动可以用有限元方法来模拟。有限元法是一种用于求解由微分方程和一组边界条件支配的边值问题的数值方法。在此建模中,利用伽辽金方法推导出线性三角形单元的线性方程组。采用了不规则几何形状和渗透率分布模型的变化。得到了模型域中流体头部和流体流速分布形式的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信