The Critical Path from Tissue Slices to Surgical Simulation: What Do Surgeons Want?

W. L. Heinrichs
{"title":"The Critical Path from Tissue Slices to Surgical Simulation: What Do Surgeons Want?","authors":"W. L. Heinrichs","doi":"10.1109/CBMS.1999.781258","DOIUrl":null,"url":null,"abstract":"Three themes: Building 3D Geometric Models from Slice Databases Segmentation and Extraction, and Virtual and Physical Modeling Creating an Educational Context with Information Frames The Hidden Curriculum of Surgery: Simulating Manipulations with Instruction Frames Building 3D geometric models from slice databases requires an aligned, (registered) volumetric dataset. Initial visualization of the anatomic region of surgical interest (AROSI), followed by segmentation and extraction of selected structures in each slice produces 2D masks for each anatomic structure. These are stacked to create 3D virtual anatomic models, either surface or volumetric, which can be transformed into physical 3D models by finite element, or other physical modeling algorithms. The methods for building 3D models will be discussed. Examples are: 1. the Lawrence Berkeley National Labs frog 2. the Stanford Visible Female (pelvis) segmentation is the selection of desired structures, and /or suppression of undesired structures prior to rendering extraction of selected structures in each slice allows for visualization of several types: 3D volumetric visualization and analysis can be done from unreconstructed images, reformated planes, curved planar reformatting, surface and volume rendering, maximum intensity projection, and shaded surface displays. transforming 3D volumetric models into physical models by finite element, or other physical modeling algorithms provides opportunity for deformations, incisions, etc. an application of such models, instrumented with accelerometers and pressure sensors is the crash testing of Cyber Dummies","PeriodicalId":74567,"journal":{"name":"Proceedings. IEEE International Symposium on Computer-Based Medical Systems","volume":"39 1","pages":"118-"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.1999.781258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Three themes: Building 3D Geometric Models from Slice Databases Segmentation and Extraction, and Virtual and Physical Modeling Creating an Educational Context with Information Frames The Hidden Curriculum of Surgery: Simulating Manipulations with Instruction Frames Building 3D geometric models from slice databases requires an aligned, (registered) volumetric dataset. Initial visualization of the anatomic region of surgical interest (AROSI), followed by segmentation and extraction of selected structures in each slice produces 2D masks for each anatomic structure. These are stacked to create 3D virtual anatomic models, either surface or volumetric, which can be transformed into physical 3D models by finite element, or other physical modeling algorithms. The methods for building 3D models will be discussed. Examples are: 1. the Lawrence Berkeley National Labs frog 2. the Stanford Visible Female (pelvis) segmentation is the selection of desired structures, and /or suppression of undesired structures prior to rendering extraction of selected structures in each slice allows for visualization of several types: 3D volumetric visualization and analysis can be done from unreconstructed images, reformated planes, curved planar reformatting, surface and volume rendering, maximum intensity projection, and shaded surface displays. transforming 3D volumetric models into physical models by finite element, or other physical modeling algorithms provides opportunity for deformations, incisions, etc. an application of such models, instrumented with accelerometers and pressure sensors is the crash testing of Cyber Dummies
从组织切片到手术模拟的关键路径:外科医生想要什么?
三个主题:从切片数据库中构建3D几何模型,分割和提取,以及虚拟和物理建模,用信息框架创建教育背景。隐藏的外科课程:用指令框架模拟操作从切片数据库中构建3D几何模型需要一个对齐的(注册的)体积数据集。首先对手术感兴趣的解剖区域(AROSI)进行可视化,然后对每个切片中选定的结构进行分割和提取,为每个解剖结构生成二维掩模。这些被堆叠以创建3D虚拟解剖模型,无论是表面还是体积,都可以通过有限元或其他物理建模算法转换为物理3D模型。将讨论建立三维模型的方法。例如:1;劳伦斯伯克利国家实验室的青蛙斯坦福可视女性(骨盆)分割是在绘制之前选择所需的结构,和/或抑制不需要的结构。在每个切片中提取选定的结构可以实现几种类型的可视化:3D体积可视化和分析可以从未重建的图像、重新格式化的平面、曲面重新格式化、表面和体积渲染、最大强度投影和阴影表面显示中完成。通过有限元或其他物理建模算法将3D体积模型转换为物理模型,为变形,切口等提供了机会,这些模型的应用,配备了加速度计和压力传感器是网络假人的碰撞测试
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信