{"title":"Anisotropic Constitutive Modeling of Compressible Biological Tissue","authors":"F. Zhao","doi":"10.4236/apm.2022.125027","DOIUrl":null,"url":null,"abstract":"The anisotropic continuum stored energy density (ACSED) functional is applied for accurate constitutive modeling of biological tissues and finite element implementation without the isochoric—volumetric split, the anisotropic—isotropic split, or the anisotropic invariant split. Related stress and elasticity tensors in the reference and current configurations are worked out. A new kinematic model is derived based on the tangent Poisson’s ratio as a cubic polynomial function of stretch. The ACSED model, along with the kinematic model, accurately fits uniaxial extension test data for compressible human skin, bovine articular cartilage, and human aorta samples.","PeriodicalId":43512,"journal":{"name":"Advances in Pure and Applied Mathematics","volume":"26 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/apm.2022.125027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The anisotropic continuum stored energy density (ACSED) functional is applied for accurate constitutive modeling of biological tissues and finite element implementation without the isochoric—volumetric split, the anisotropic—isotropic split, or the anisotropic invariant split. Related stress and elasticity tensors in the reference and current configurations are worked out. A new kinematic model is derived based on the tangent Poisson’s ratio as a cubic polynomial function of stretch. The ACSED model, along with the kinematic model, accurately fits uniaxial extension test data for compressible human skin, bovine articular cartilage, and human aorta samples.