{"title":"The Comaximal Graphs of Noncommutative Rings","authors":"Shouqiang Shen, Weijun Liu, Lihua Feng","doi":"10.1142/s1005386723000366","DOIUrl":null,"url":null,"abstract":"For a ring [Formula: see text] (not necessarily commutative) with identity, the comaximal graph of [Formula: see text], denoted by [Formula: see text], is a graph whose vertices are all the nonunit elements of [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. In this paper we consider a subgraph [Formula: see text] of [Formula: see text] induced by [Formula: see text], where [Formula: see text] is the set of all left-invertible elements of [Formula: see text]. We characterize those rings [Formula: see text] for which [Formula: see text] is a complete graph or a star graph, where [Formula: see text] is the Jacobson radical of [Formula: see text]. We investigate the clique number and the chromatic number of the graph [Formula: see text], and we prove that if every left ideal of [Formula: see text] is symmetric, then this graph is connected and its diameter is at most 3. Moreover, we completely characterize the diameter of [Formula: see text]. We also investigate the properties of [Formula: see text] when [Formula: see text] is a split graph.","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"4 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000366","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a ring [Formula: see text] (not necessarily commutative) with identity, the comaximal graph of [Formula: see text], denoted by [Formula: see text], is a graph whose vertices are all the nonunit elements of [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. In this paper we consider a subgraph [Formula: see text] of [Formula: see text] induced by [Formula: see text], where [Formula: see text] is the set of all left-invertible elements of [Formula: see text]. We characterize those rings [Formula: see text] for which [Formula: see text] is a complete graph or a star graph, where [Formula: see text] is the Jacobson radical of [Formula: see text]. We investigate the clique number and the chromatic number of the graph [Formula: see text], and we prove that if every left ideal of [Formula: see text] is symmetric, then this graph is connected and its diameter is at most 3. Moreover, we completely characterize the diameter of [Formula: see text]. We also investigate the properties of [Formula: see text] when [Formula: see text] is a split graph.
对于具有恒等式的环[公式:见文](不一定交换),[公式:见文]的最大图,用[公式:见文]表示,其顶点是[公式:见文]的所有非单位元素,且两个不同的顶点[公式:见文]和[公式:见文]相邻当且仅当[公式:见文]。本文考虑由[公式:见文]导出的[公式:见文]的一个子图[公式:见文],其中[公式:见文]是[公式:见文]的所有左可逆元素的集合。我们描述那些[公式:见文]是完全图或星图的环[公式:见文],其中[公式:见文]是[公式:见文]的Jacobson根。我们研究了图[公式:见文]的团数和色数,并证明了如果[公式:见文]的每一个左理想都是对称的,那么这个图是连通的,并且它的直径不超过3。此外,我们完全描述了[公式:见文本]的直径。我们还研究了当[Formula: see text]是一个分割图时[Formula: see text]的性质。
期刊介绍:
Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.