The Comaximal Graphs of Noncommutative Rings

Pub Date : 2023-08-29 DOI:10.1142/s1005386723000366
Shouqiang Shen, Weijun Liu, Lihua Feng
{"title":"The Comaximal Graphs of Noncommutative Rings","authors":"Shouqiang Shen, Weijun Liu, Lihua Feng","doi":"10.1142/s1005386723000366","DOIUrl":null,"url":null,"abstract":"For a ring [Formula: see text] (not necessarily commutative) with identity, the comaximal graph of [Formula: see text], denoted by [Formula: see text], is a graph whose vertices are all the nonunit elements of [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. In this paper we consider a subgraph [Formula: see text] of [Formula: see text] induced by [Formula: see text], where [Formula: see text] is the set of all left-invertible elements of [Formula: see text]. We characterize those rings [Formula: see text] for which [Formula: see text] is a complete graph or a star graph, where [Formula: see text] is the Jacobson radical of [Formula: see text]. We investigate the clique number and the chromatic number of the graph [Formula: see text], and we prove that if every left ideal of [Formula: see text] is symmetric, then this graph is connected and its diameter is at most 3. Moreover, we completely characterize the diameter of [Formula: see text]. We also investigate the properties of [Formula: see text] when [Formula: see text] is a split graph.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a ring [Formula: see text] (not necessarily commutative) with identity, the comaximal graph of [Formula: see text], denoted by [Formula: see text], is a graph whose vertices are all the nonunit elements of [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. In this paper we consider a subgraph [Formula: see text] of [Formula: see text] induced by [Formula: see text], where [Formula: see text] is the set of all left-invertible elements of [Formula: see text]. We characterize those rings [Formula: see text] for which [Formula: see text] is a complete graph or a star graph, where [Formula: see text] is the Jacobson radical of [Formula: see text]. We investigate the clique number and the chromatic number of the graph [Formula: see text], and we prove that if every left ideal of [Formula: see text] is symmetric, then this graph is connected and its diameter is at most 3. Moreover, we completely characterize the diameter of [Formula: see text]. We also investigate the properties of [Formula: see text] when [Formula: see text] is a split graph.
分享
查看原文
非交换环的极大图
对于具有恒等式的环[公式:见文](不一定交换),[公式:见文]的最大图,用[公式:见文]表示,其顶点是[公式:见文]的所有非单位元素,且两个不同的顶点[公式:见文]和[公式:见文]相邻当且仅当[公式:见文]。本文考虑由[公式:见文]导出的[公式:见文]的一个子图[公式:见文],其中[公式:见文]是[公式:见文]的所有左可逆元素的集合。我们描述那些[公式:见文]是完全图或星图的环[公式:见文],其中[公式:见文]是[公式:见文]的Jacobson根。我们研究了图[公式:见文]的团数和色数,并证明了如果[公式:见文]的每一个左理想都是对称的,那么这个图是连通的,并且它的直径不超过3。此外,我们完全描述了[公式:见文本]的直径。我们还研究了当[Formula: see text]是一个分割图时[Formula: see text]的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信